RePORT India

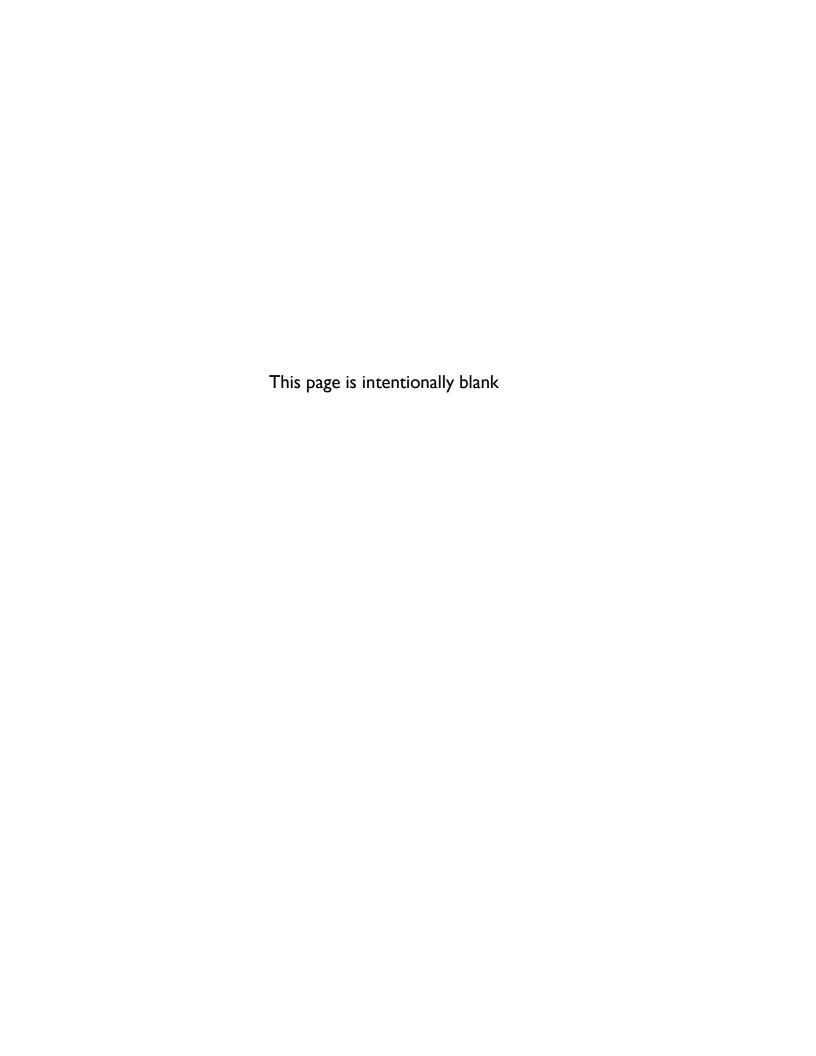
8TH ANNUAL JOINT LEADERSHIP MEETING BIOMARKERS & BEYOND CHENNAI | 4–6 FEB 2019

Hosted by the National Institute of Research in Tuberculosis (NIRT) - ICMR

Key Partners

- Bhagwan Mahavir Medical Research Center (BMMRC)
- Byramjee Jeejeebhoy Government Medical College (BJGMC)
- Boston University/Boston Medical Center (BU/BMC)
- Christian Medical College, Vellore (CMC)
- CRDF Global
- Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER)
- Johns Hopkins University (JHU)

- M. Viswanathan Diabetes Research Center (MVDRC)
- National Institute for Research In Tuberculosis (NIRT)
- PD Hinduja Hospital
- PPD
- RePORT International Coordinating Center (RICC)
- Rutgers University
- University of Cambridge
- University of Massachusetts (UMass)
- University of Texas Health Science Center at Tyler



Contents prepared February 2019

Contents

RePORT India Overview	I
Data Tables	7
Young Investigator Abstracts	53
Publications	69
Lectures & Presentations	83
Grants & Substudies	97

RePORT India Overview

RePORT India

 8^{TH} ANNUAL JOINT LEADERSHIP MEETING

BIOMARKERS & BEYOND

CHENNAI | 4-6 FEB 2019

This page is intentionally blank

BACKGROUND

RePORT India (<u>Reg</u>ional <u>Prospective Observational Research for Tuberculosis (TB)</u>) is a bilateral, multi-organizational, collaborative research effort established in 2013 under the Indo-US Vaccine Action Program (VAP). The consortium aims to address the threat of TB to the people of India and across the globe, a disease which also poses an increased risk for persons living with HIV or other immunocompromised conditions. RePORT India is one of six regional consortia—China, Brazil, Indonesia, Philippines, and South Africa are also undertaking multi-organizational TB research efforts. Each RePORT consortium is designed to support incountry data collection, specimen biorepositories, and associated research with the goal of adding additional regional consortia to encourage worldwide TB prevention and treatment research.

RePORT INDIA MISSION

RePORT India is charged with:

- 1. Advancing regional TB science in India, towards fulfilling the TB strategic goals of the country
- 2. Strengthening TB research capacity and infrastructure; and
- 3. Fostering research collaboration within India and with other countries with an aim of carrying out a wide range of basic and clinical research that can lead to clinically important biomarkers, vaccines, drugs, and diagnostics.

COHORT RESEARCH UNITS (CRUs)

RePORT India consists of six distinct TB Cohort Research Units (CRUs) at seven Indian clinical sites located in Western and Southern India. Each CRU is partnered with a US-based Principal Investigator (PI) and an academic institution. CRUs consist of one or more clinical sites where participants are enrolled and where data and samples are collected for research. There are two prospective observational cohorts of participants from whom specimens are collected:

- Cohort A: Participants who have active pulmonary TB. Studies involving this cohort of patients focus on TB diagnosis and treatment outcomes.
- Cohort B: Participants who are household contacts (HHCs) of an active case of TB. Studies involving this cohort of patients focus on risk of infection and TB disease after exposure.

COMMON PROTOCOL (RePORT INDIA-WIDE OBJECTIVE)

All CRUs collaborate to implement a RePORT India Common Protocol to establish an Indian biorepository of well-characterized and standardized specimens with associated clinical data for future TB research. The Common Protocol was launched in April 2017. The central repository for specimen storage is located at the National Institute of Research in Tuberculosis (NIRT) in Chennai, a statistical and data management center is housed at the Society for Applied Studies (SAS)-Centre for Health Research and Development (CHRD) in New Delhi, and technical support is provided by an NIH contract to PPD.

The primary objective of the Common Protocol is to collect specimens and make them available to Indian biomarker researchers and collaborators over the next decade to achieve a better understanding of: I) the prognosis of TB disease; and 2) the pathogenesis of progression from TB exposure to disease.

PARENT PROTOCOLS (CRU-SPECIFIC OBJECTIVES)

Prior to commencing the Common Protocol, and as early as 2014, CRUs began implementing individual "Parent Protocols" with distinct research objectives. Each CRU is connected to one or more laboratories where samples are processed for storage and specified for both protocol and future testing. The CRUs house their Parent Protocol data and samples at their respective India-based institutions. Below are the CRUs and their Parent Protocols:

I. BMMRC and U of Texas, Tyler

- Study: Immunologic Markers of Persons at Highest Risk of Progression of Latent TB Infection to TB
- India PI: Dr. Vijaya Valluri, Bhagawan Mahavir Medical Research Centre (BMMRC), Hyderabad, India
- US PI: Dr. Krishna Vankayalapati, University of Texas Health Science Center, Tyler, TX, USA
- Participating Patient Cohort: Cohort B

2. BJGMC, NIRT, and JHU

- **Study:** Host and Microbial Factors Associated with Poor Treatment Response and Progression to Active TB (C-TRIUMPH)
- India PIs: Drs. Vidya Mave, Shashikala Sangle, Aarti Kinikar and Sanjay Gaikwad, Byramjee Jeejeebhoy Government Medical College (BJGMC), Pune, India and Dr. Padma Chandrasekaran, National Institute for Research in TB (NIRT), Chennai, India
- US PI: Dr. Amita Gupta, Johns Hopkins University, Baltimore, MD, USA
- Participating Patient Cohorts: Cohort A (Adult Pulmonary TB, Pediatric TB, and Extrapulmonary TB) and Cohort B

3. CMC Vellore and U of Wash/U of Cambridge

- **Topic Study:** Host Determinants in the Eicosanoid Pathway that Modulate the Inflammatory Response, Disease Outcome, and Treatment Responsiveness in TB
- India PI: Dr. DJ Christopher, Christian Medical College (CMC), Vellore, India
- US PI: Dr. Lalitha Ramakrishnan, University of Washington/University of Cambridge, UK
- Participating Patient Cohort: Cohort A (Adult Pulmonary TB and TB Meningitis)

4. Hinduja and JHU

- **Topic of Study:** MDR-TB Treatment Outcomes, Adverse Effects, Mtb Genotyping, and Pharmacokinetic Testing
- India PIs: Drs. Zarir F. Udwadia, Tester F. Ashavaid, and Camilla Rodrigues; PD Hinduja Hospital, Mumbai, India
- US PI: Dr. Amita Gupta, Johns Hopkins University, Baltimore, MD, USA
- Participating Patient Cohorts: Cohort A (Adult/Adolescent MDR-TB) and Cohort B

5. IIPMER, BMC, and Rutgers

- Topic of Study: Biomarkers for Risk of TB and for TB Treatment Failure and Relapse
- India PIs: Drs. Gautam Roy, and Sonali Sarkar, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
- US PI: Dr. Jerrold Ellner and Dr. Padmini Salgame, Rutgers University, Bridgeton, NJ, USA
- Participating Patient Cohorts: Cohort A (Adult Pulmonary TB and Pediatric TB) and Cohort B

6. MVDRC and UMass

- Topic of Study: Effects of Diabetes and Prediabetes on TB Severity
- India PI: Dr. Vijay Viswanathan, MV Diabetes Research Centre (MVDRC), Chennai, India
- US PI: Dr. Hardy Kornfeld, University of Massachusetts Medical School, Boston, USA
- Participating Patient Cohort: Cohort A (Adult Pulmonary TB)

RePORT INDIA SUBSTUDIES

A complete list of RePORT-related grants and sub studies can be found on page 97 of this booklet.

RePORT INDIA ADMINISTRATION

The RePORT India Consortium's primary governance body is the Executive Committee, whose mission is to:

- Set research priorities for the consortium and guide scientific activities;
- Ensure coordination of TB research; and
- Provide administrative and logistics support.

The consortium is currently governed by Dr. D.J. Christopher (India Chair), Dr. Vijaya Valluri (India Co-Chair), Dr. Amita Gupta (US Chair), and Dr. Hardy Kornfeld (US Co-Chair). The Executive Committee convenes a monthly teleconference. The consortium has several active working groups including: Operations, Basic Science, Clinical Epidemiology, Behavioral Science, and Data Management. The Common Protocol leadership also convene on a monthly basis. Consortium operations are facilitated by a RePORT India Coordinator located in India in Chennai and a US Secretariat located in the US at Johns Hopkins University.

FUNDING

The RePORT Indian Consortium is supported with funding from the Government of India's (GOI) Department of Biotechnology (DBT) as the primary GOI sponsor, and the US National Institutes of Health's (NIH) National Institute of Allergy and Infectious Diseases (NIAID), Division of AIDS (DAIDS), and Office of AIDS Research (OAR). This initiative is also supported by the Indian Council and Medical Research (ICMR) from the Indian side. CRDF Global administers and oversees the funding from the US government.

This page is intentionally blank

Data Tables

RePORT India

8TH ANNUAL JOINT LEADERSHIP MEETING

BIOMARKERS & BEYOND CHENNAI | 4-6 FEB 2019 This page is intentionally blank

PARENT PROTOCOLS: STATUS REPORT COHORTS A & B | YEARS 2014–2018

Table I: Sample Size Targets & Enrolments

		СОН	IORT A			СОН	IORT B	
	S ite	Target SS, n	Enrolled, n (%)	Among Enrolled, < 15 years, n (%)	Site	Target SS, n	Enrolled, n (%)	Among Enrolled, < 15 years, n (%)
<u>U</u>	PTB	400	256 (64%)	NA	<u>U</u>			
ВЈБМС	Ped	100	142 (132%)	142 (100%)	ВЈСМС	700	499 (71%)	164 (33%)
8	EPTB	100	113 (113%)	NA	8			
_	PTB	400	248 (62%)	NA	L			
N R	Ped	100	59 (59%)	59 (100%)	Z F	700	551 (79%)	121 (22%)
	EPTB	100	88 (88%)	NA				
CMC	PTB	200	110 (55%)	NA	5		NI- C-b	D
Ö	ТВМ	200	213 (107%)	NA	CMC		No Cohort	В
JIPMER	РТВ	1100	1159 (100%)	4 (0.3%)	JIPMER	1500	1559 (100%)	314 (19%)
MVDRC	РТВ	450	446 (99%)	NA	MVDRC		No Cohort	В
BMMRC		No	o Cohort A		ВММКС	1500	990 (66%)	63 (6%)
HINDUJA*	MDR- TB	200	56 (28%)	NA	HINDUJA	60	0	0
T	OTAL	3350	2890 (86%)	205 (7%)	TOTAL	4460	3599 (81%)	662 (18%)

SS=Sample Size; PTB=Pulmonary TB; TBM=TB Meningitis; EPTB= Extra pulmonary TB; Ped=Pediatric; MDR-TB=Multidrug-resistant TB

^{*}Hinduja launched parent protocol in Oct 2017; enrolls PTB and EPTB patients with MDR-TB >15 years old.

COHORTS A & B | YEARS 2014-2018 Table 2: Outcomes

		ŏ	COHORT A n=2546	n=2546						COHORT B n= 3393	= 3393		
		Tx Failure	ıre	TB Recurrence	rence	ΑII		Prevalent TB	: TB	Incident TB	it TB	Incident	All Cause
	Site	Bacteriological	Clinical	Bacteriological	Clinical	Cause Death	Site	Bacteriological	Clinical	Bacteriological	Clinical	LTBI	Death
Э	PTB n=256	16 (7%)	7 (3%)	6 (3%)	5 (2%)	21 (9%)	2						
Mole	Ped n=142	2 (1%)	4 (3%)	0	6 (5%)	1(1%)	MO(1	(%1) 9	15 (3%)	4 (1%)	10 (2%)	61 (12%)	2 (.4%)
8	EPTB n=113	0	0	3 (3%)	5 (5%)	7 (7%)	9						
	PTB, n=248	22 (9%)	0	13 (5%)	0	15 (6%)							
ГЯІМ	Ped n=59	2 (3%)	0	1 (2%)	0	0	TЯIN čč=r	16 (3%)	0	4(1%)	0	73 (13%)	4 (.7%)
١	EPTB n=88	4 (5%)	0	2 (2%)	0	3 (3%)							
МС	PTB n= 011	4 (4%)	2 (2%)	2 (2%)	(%1)	5 (5%)	МС			No Cohort B	or B		
э	TBM n=213	0	0	0	0	49 (23%)	Э						
ЯЭМЫ	PTB n=1003	21 (2%)	0	15 (1%)	0	40 (3%)	JIPMER n=1452	6 (0.4%)	0	3 (0.2%)	0	Ā	6 (.4%)
MADEC	PTB n=446	18 (5%)	3 (0.6%)	24 (6%)	0	16 (4%)	MADEC			No Cohort B	ort B		
ВММКС			N _o	No Cohort A			BMMRC n=891	10°(1%)		18 (1.8%)		(%2)	0
∗AĮUŪNIH	MDR-TB n=6	0		0		3 (5%)	A(UQNIH 0=n	0		0		0	0
ı	PTB	18	12	89	9	≠2.6							
БТоТ	Ped	2	4	-	9	_	sto]	38	15	29	01	200	12
L	EPTB	4	0	S	2	10 + 39 TBM	L						

TB=Pulmonary TB; TBM=TB Meningitis; Tx=Treatment; LTBI=Latent TB Infection; EPTB=Extrapulmonary TB; Ped=Pediatric; MDR-TB=Multidrug-resistant TB; HHC=Household Contacts * Hinduja launched parent protocol in Oct 2017, enrols PTB and EPTB patients with MDR-TB >15 years old.

**Reported as prevalent TB infection. ± Doesn't include 3 MDRTB deaths from Hinduja

Tx Failure: TB patients enrolled in the parent protocol and declared failure while on treatment between month five and end of treatment.

Tx Recurrence: Patients diagnosed as TB after being declared as cured or treatment complete.

Incident LTBI: LTBI negative at baseline by either TST or IGRA and became positive TX and BTST or IGRA and

PARENT PROTOCOLS: PATIENT ENROLMENT, DEMOGRAPHICS & FOLLOW-UP COHORT A | YEARS 2014-2018

Table 3a: Percentage of Subjects Enrolled among Those Screened

			сон	ORT A		
	Site	Total Approached or Screened, n	Subjects Enrolled, n (%)	BL Smear Positive, n (%)	BL Xpert Positive, n (%)	BL Culture Positive, n (%)
U	PTB*	969	256 (26%)	110 (43%)	173 (68%)	172 (67%)
ВЈБМС	Ped	178	142 (80%)	11 (8%)	27 (19%)	24 (17%)
B	EPTB	127	113 (89%)	3 (3%)	18 (7%)	10 (9%)
	PTB*	756	248 (33%)	212 (85%)	169 (68%)	229 (92%)
NIRT	Ped	85	59 (69%)	4 (7%)	7 (12%)	12 (20%)
	EPTB	130	88 (68%)	9 (10%)	9 (10%)	17 (19%)
ပ္	РТВ	113	110 (97%)	94 (85%)	107(97%)	105(95%)
CMC	ТВМ	239	213 (89%)	CSF – 2 (1%)	CSF – 22 (10%)	CSF – 44 (21%)
JIPMER	РТВ	1090	1003 (92%)	1003 (100%)	NA	953 (95%)
MVDRC	РТВ	569	446 (79%)	385 (87%)	NA	399 (90%)
HINDUJA	MDR-TB	176	56 (32%)	27 (48%)	42 (75%)	53 (94%)
Т	OTAL	4432	2734 (62%)	1860 (68%)	574 (21%)	2018 (74%)

BL=Baseline; ATT=Anti-TB Treatment; PTB=Pulmonary TB; TBM=TB Meningitis; Ped=Pediatric; EPTB=Extrapulmonary TB; CSF=Cerebrospinal Fluid; MDR-TB=Multidrug-resistant TB

^{*}Approached or screened any patient who was started on ATT in the study area including new and re-treatment cases for adult PTB, EPTB and Pediatric TB. Smear negative TB patients and clinically diagnosed TB patients were included.

PARENT PROTOCOLS: PATIENT ENROLMENT, DEMOGRAPHICS & FOLLOW-UPCOHORT A | YEARS 2014-2018

Table 3b: Demographics among Those Enrolled

		CC	HORT	A CHA	ARACTER	ISTICS, n	(%)	
:	Site	Age, median (min- max)	Male n (%)	HIV Positive n (%)	Current Smoker n (%)	Current Drinker n (%)	Diabetes † n (%)	Low BMI (<18.5) n (%)
U	PTB n=256	30 (15-69)	148 (58%)	31 (12%)	23 (9%)	78 (30%)	23 (9%)	146 (57%)
ВЈСМС	Ped n=142 EPTB	8 (1-14) 30	64 (45%) 57	7 (5%) 15	NA 4	NA 24	NA 5	134 (94%) 45
	n=113	(15-62)	(50%)	(13%)	(4%)	(21%)	(4%)	(40%)
	PTB n=248	44 (15-75)	170 (69%)	2 (1%)	38 (15%)	127 (51%)	115 (46%)	150 (60%)
NIRT	Ped n=59	10 (2-14)	3 I (66%)	0	NA	NA	NA	42 (71%)
	EPTB n=88	29 (15-63)	39 (45%)	4 (5%)	3 (3%)	16 (18%)	8 (9%)	3 I (35%)
CMC	PTB n=110	43 (18-79)	74 (67%)	Excluded	24 (22%)	3 I (28%)	36 (33%)	70 (64%)
Ū	TBM n=213	39 (18-78)	132 (62%)	28 (13%)	21 (10%)	38(18%)	40 (19)%	42 (20%)
JIPMER	PTB n=1003	45 (13-82)	785 (78%)	6 (<0.1%)	205 (20%)	600 (60%)	262 (26%)	567 (57%)
MVDRC	PTB n=446	48 (25-73)	355 (80%)	Excluded	117 (26%)	189 (42%)	284 (64%)	221 (50%)
HINDUJA	MDR- TB n=56	29 (15-77)	19 (33%)	l (2%)	3 (5%)	0	7 (13%)	27 (48%)
T	OTAL	_	1874 (69%)	94 (3%)	438 (17%)	1103 (44%)	780 (31%)	1475 (54%)

PTB=Pulmonary TB; TBM=TB Meningitis; Ped=Pediatric; MDR-TB=Multidrug-resistant TB; EPTB=Extrapulmonary TB; CSF=Cerebrospinal Fluid

^{*}Smoking, drinking, diabetes only assessed among patients 18 years old and above.

[#]BMI is approximate for TBM cohort.

[†]Diabetes defined as self-reported DM or >200 RBS or HbA1c > 6.5% among adults 18 years old and above.

PARENT PROTOCOLS: PATIENT ENROLMENT, DEMOGRAPHICS & FOLLOW-UP COHORT A | YEARS 2014-2018

Table 4a: Number of Study Participants on Follow-up among Those Enrolled

		COHORT A	A
	Site	Total Enrolled, n	On active follow up, n (%)
U	PTB	256	II (4 %)
ВЈБМС	Ped	142	43 (30%)
8	EPTB	113	22 (20%)
_	PTB	248	60 (24%)
NIRT	Ped	59	38 (64%)
_	EPTB	88	40 (45%)
CMC	PTB	110	27 (24%)
ΰ	ТВМ	213	39 (18%)
JIPMER	РТВ	1003	246 (25%)
MVDRC	РТВ	446	53 (12%)
HINDUJA	MDR-TB	56	51 (91%)
	OTAL	2734	630 (23%)

PTB=Pulmonary TB; Ped=Pediatric; TBM=TB Meningitis; EPTB=Extrapulmonary TB; MDR-TB=Multidrug-resistant TB

PARENT PROTOCOLS: PATIENT ENROLMENT, DEMOGRAPHICS & FOLLOW UP COHORT A | YEARS 2014-2018

Table 4b: Outcomes among Those Who Have Completed Treatment

			СОН	ORT A		
		Completed		Unfavorable (Outcomes, n (%)	
	Site	ATT, n	Tx Failure	Tx Relapse	All-cause mortality	Lost to Follow-up*
U	РТВ	241	23 (10%)	11 (5%)	21 (9%)	33 (14%)
ВЈБМС	Ped	140	6 (4%)	6 (5%)	I (I%)	8 (6%)
8	EPTB	108	0	8 (7%)	7 (7%)	17 (16%)
	PTB	248	22 (9%)	13 (5%)	15 (6%)	15 (6%)
NIRT	Ped	59	2 (3%)	I (2%)	0	2 (3%)
Z	EPTB	88	4 (5%)	2 (2%)	3 (3%)	5 (6%)
<u>o</u>	PTB	55	6 (11%)	3 (5%)	5 (9%)	8 (19%)
CMC	TBM	77	0	0	49 (64%)	12 (24%)
JIPMER	РТВ	752	17 (2%)	11 (1%)	34 (5%)	91 (12%)
MVDRC	PTB	317	21 (7%)	24 (8%)	16 (5%)	43 (14%)
HINDUJA	MDR-TB	0	0	0	3 (5%)	2 (3%)
Т	OTAL	2085	101 (5%)	79 (4%)	154 (7%)	236 (11%)

PTB=Pulmonary TB; Ped=Pediatric; TBM=TB Meningitis; EPTB=Extrapulmonary TB; ATT=Anti-TB Treatment; Tx=Treatment *At end of follow-up period only.

PARENT PROTOCOLS: PATIENT ENROLMENT, DEMOGRAPHICS & FOLLOW UP COHORT B | YEARS 2014-2018

Table 5: Number of Household Contacts (HHC) Enrolled among Those Reported by Index Cases

	COHORT B	
Site	HHCs reported by index case, n	Enrolled, n (%)
BJGMC	658	499 (76%)
NIRT	1272	551 (44%)
JIPMER	776	1452 (97%)
BMMRC	1292	990 (77%)
TOTAL	3998	3492 (87%)

Table 6: Baseline Demographics among Those Enrolled

	C	OHORT	B CHAR	ACTERIST	TICS, n (%)		
Site	Age, median (min-max)	Male	LTBI Positive*	Current Smoker	Current Drinker	Diabetes **	Low BMI (<18.5)
ВЈСМС	25 (1-71)	216 (43%)	321 (64%)	27 (5%)	58 (12%)	21 (4%)	197 (40%)
NIRT	27 (1-70)	253 (46%)	416 (76%)	36 (7%)	79 (14%)	49 (14%)	171 (31%)
JIPMER	26 (5-90)	591 (41%)	782 (54%)	105 (7%)	152 (11%)	81 (6%)	485 (34%)
BMMRC	28 (6-73)	465 (47%)	582 (59%)	99 (10%)	109 (11%)	Excluded	238 (24%)
Total	27 (1 – 90)	1525 (43%)	2101 (60%)	267 (7%)	398 (12%)	151 (8%)	1091 (32%)

LTBI=Latent TB Infection; BMI=Body Mass Index

^{*}TST or IGRA

^{**}Diabetes defined as self-reported DM or > 200 random blood sugar or HbA1c ≥ 6.5% among adults 18 years old and above

PARENT PROTOCOLS: PATIENT ENROLMENT, DEMOGRAPHICS & FOLLOW-UP COHORT B | YEARS 2014-2018

Table 7a: Number of Study Participants on Follow-up among Tthose Enrolled

		COHORT	В	
Site	Enrolled, n	On follow-up, n (%)	Completed follow up, n (%)	Lost to follow up, n (%)
BJGMC	499	30 (6%)	332 (67%)	96* (19%)
NIRT	551	76 (14%)	436 (79%)	39 (7%)
JIPMER	1452	700 (48%)	724 (50%)	28 (2%)
BMMRC	990	116 (12%)	724 (73%)	150 (15%)
TOTAL	3492	922 (26%)	2216 (63%)	313 (9%)

Table 7b: Outcomes among Household Contacts

		СОНО	ORT B		
	Completed		Unfavorable	Outcomes	
Site	follow up, n (%)	Lost to follow up* n (%)	Incident TB**	Prevalent TB [#]	TB deaths
BJGMC	332 (67%)	96 (19%)	14 (3%)	21 (4%)	2 (0.4%)
NIRT	436 (79%)	39 (7%)	4 (1%)	16 (3%)	4 (1%)
JIPMER	724 (50%)	28 (2%)	3 (0.2%)	6 (0.7%)	(0.1%)
BMMRC	724 (73%)	150 (15%)	18 (2%)	10 (1%)	0
TOTAL	2216	313 (14%)	39 (2%)	53 (2%)	7 (0.3%)

^{*}Only includes patients who have completed their follow up study period per the site's definition.

^{**}Not Prevalent TB and diagnosed with TB either bacteriologically or clinically, four or more weeks from the time of enrolment. #Diagnosed as TB at site bacteriologically or clinically, at the time of screening or within 4 weeks since the time of enrolment.

				Cohort	A - Pu	Cohort A - Pulmonary TB	у ТВ										Cohoi	Cohort A - Pulmonary TB	Ilmona	ry TB						-	
# of Alianote			Baselin	Baseline (≤14 days)	days)					2 V	2 Weeks						I Month	÷					2	2 Month			
Sobbio de	BJGMC	BJGMC NIRT	CMC	IPMER	IVDRCH	CMC JIPMER MVDRCHinduja Total BJGMC NIRT	rotal B	IGMC 1	⊢	CMC JIE	MER M	CMC JIPMER MVDRGHinduja Total	nduja T		BJGMC NIRT	RT CMC	C JIPMER	JIPMERMVDRCHinduja Total BJGMC NIRT	linduja	Total	3JGMC	. 	CMC JI	IPMER	JIPMER MVDRQHinduja Total	nduja T	otal
Plasma	2076	1808	089	1004	822		6390							22	2248 1712	12				3960	1774	0891			744	4	4198
Plasma for PK														2	272 228	®			999	9911						976	576
PAXgene	214	239	20	2263	296	56 3	3088							2.	222 228	80			26	206	215	218		1891	313	46 2	2473
PBMCs	316	210	55		752		1633							ě.	383 489	61				872	387	432			899		1487
DNA			324			224	548	9						9												184	184
QGIT	2328	828					3156							20	2085 684	4				2769	1953	552				7	2505
Mtb Isolate	114	602		431	490	42	6291	65	384				4	449 2	27 213	3			6	249	91	0/				7	93
Urine	2041	924	341			409	3715							17	1780 914	4			661	2893	1755	088				166 2	2801
Hair	302	54					356								122 31					153		7					7
Sputum	247	404				132	783	111	301				56 4	474 L	287				51	463	122	274				30	426
Sputum Deposit	159						159	95						95 8	83					83	68						68
G.Aspirate/ Saliva																											
TOTALS	7797	5369	1420	3698	2360	863 2	21507	283	685				26	1024 73	7347 4786	98			186	13114	6311	4113		1891	1725	6001	14839

							Cohor	Cohort A - Pulmonary TB	lmon	ary TB				
# of Aliquote			2	5 Month						,	6 Month	,		
	BJGMC NIRT	NIRT	CMC	JIPMER	4VDRQ	CMC JIPMER MVDRCHinduja Total BJGMC NIRT	Total	BJGMC	NIRT	CMC	CMC JIPMER MVDRCHinduja Total	MVDRC	Hinduja	Total
Plasma								1585	208			612		2405
Plasma for PK	238	213					451						402	402
PAXgene		-					_	194	26			226	29	475
PBMCs								349	43			492		884
DNA	202	263					465		2				911	811
QGIT								1214	24					1238
Mtb Isolate	4	40					4	3	3					9
Urine								1541	9/				112	1729
Hair	102	37					139	63						93
Sputum	Ш	342					453	105	38				01	153
Sputum Deposit	84						84	11						71
G.Aspirate/ Saliva														
TOTALS	741	896					1637	5155	420			1330	699	
		l	l	l	l	I	l	I	l	l	l			

# of Aliciote			_	12 Month	ع ا					_	18 Month	4		
	BJGMC	NIRT	CMC	JIPMER	JIPMER MVDRC Hinduja Total	Hinduja	Total	BJGMC	NIRT	CMC	JIPMER	MVDRC	JIPMER MYDRC Hinduja	Total
Plasma	1711	1552					3263					412		412
Plasma for PK						180	180							
PAXgene	170	202				9	378					202		205
PBMCs	337	365					702					388		388
DNA						24	24							
QGIT	504						504							
Mtb Isolate		-				-	2		15					15
Urine	1350	830				24	2204							
Hair	-						_							
Sputum	13	2					15	123	500					332
Sputum Deposit	3						3	45						45
G.Aspirate/ Saliva														
TOTALS	4089	2952				235	7276	891	224			500 I		1397

# of Alimote			2	24 Month						ū	End TB Tx				TB R	TB Recurrence- bacteriological	nce-bac	teriologi	cal	
	BJGMC	NIRT	CMC	JIPMER MVDR	IVDRC H	.C Hinduja	Total	BJGMC*	NIRT*	CMC	JIPMER# MVDRC	Hinduja '	Total	BJGMC	NIRT	CMC	JIPMER	MVDRC	Hinduja	Total
Plasma	11511	1240					2751	180	1512		37		1729	06	208		4			302
Plasma for PK																				
PAXgene	148	691					317	11	182		101		306	6	27		29			65
PBMCs	279	304					583	33	324				357	91	47			42		105
DNA									3				3		-					_
QGIT								7.5	36				Ξ							
Mtb Isolate									6				6	3	15					18
Urine	8611	919					1814	128	762				890	72	28					130
Hair	40						40	21	27				48	12	2					14
Sputum	_						_	13	211				224	5	33					38
Sputum Deposit								9					9	3						3
G.Aspirate/ Saliva																				
TOTALS	3177	2329					2506	473	3066		144		3683	210	391		33	42		929

# of Alicipte			TB Reci	urrence-	TB Recurrence- Clinical				1	3 Failure	- Bacter	TB Failure- Bacteriological					TB Fail	TB Failure- Clinical	ical		
	BJGMC	NIRT	CMC	JIPMER	JIPMER MVDRC Hinduja	Hinduja	Total	BJGMC	NIRT	CMC	JIPMER I	MVDRC H	Hinduja 7	Total B	BJGMC	NIRT	CMC	JIPMER MVDRC	VDRC Hi	Hinduja T	Total
Plasma	29						29	240	-		40			281	46						46
Plasma for PK																					
PAXgene	3						3	27	2		28			87	9						9
PBMCs	9						9	37	2					39	=						=
DNA																					
QGIT								120						120	45						45
Mtb Isolate	-						_	91						91	2						2
Urine	31						31	231	15					246	48						48
Hair	5						5	23						23	4						4
Sputum	3						3	91	3					61	4						4
Sputum Deposit	-						_	6						6	-						_
G.Aspirate/ Saliva																					
TOTALS	79						79	416	23		86			840	191						167

# of Aliquots			ņ	Unscheduled	eq						TOTAL			
	BJGMC	NIRT	CMC	JIPMER	JIPMER MYDRC Hinduja	Hinduja	Total	BJGMC	NIRT	CMC	JIPMER	JIPMER MVDRC Hinduja	Hinduja	Total
Plasma	512						512	12002	9929	089	1418	2590		26619
Plasma for PK	3						3	513	144				1824	2778
PAXgene	54						54	1279	1296	20	4138	1040	193	7966
PBMCs	601						601	2263	2519	55		2342		7179
DNA								208	569	324			548	1349
QGIT	62						95	8419	2124					10543
Mtb Isolate		34					34	251	1386		431	490	65	2617
Urine	413	28					441	10588	5163	341			016	17002
Hair	21						11	742	158					006
Sputum	4	101					Ш	6001	2214				6/7	3502
Sputum Deposit	2						2	159						159
G.Aspirate/ Saliva													95	95
TOTALS	1209	169					1378	37925	25499	1420	5987	6462	3869	81162

	Cohort A TBM
	Baseline (<14 davs)
# of Aliquots	CMC
CSF	66
Plasma	165
DNA	7.5
Urine	129
Total	468

		Baseline	Γ			Γ			Γ			Г]	Г			Γ
# of Aliquots	_	(<7 days)		2	2 Weeks		1	1 Month		2	2 Month		5	5 Month		9	6 month	
	BJGMC NIRT	NIRT	Total	BJGMC NIRT	-	Total	BJGMC	NIRT	Total	BJGMC	NIRT	Total	BJGMC	NIRT	Total	ВЈСМС	NIRT	Total
Plasma	1075	432	1507				1137	448	1585	1188	432	1620		56	56	6/01	44	1223
Plasma for PK							183	55	238				171	53	224			
PAXgene	<u>70</u>	26	160				111	26	173	132	55	187		8	8	801	11	125
PBMCs	129	601	238				147	901	253	145	105	250		24	24	132	4	176
DNA													123	661	322		4	4
QGIT	513	36	549				582	36	819	539	36	575				345		345
Mtb Isolate	35	26	19	01	8	81	9	5	=	4	2	9						
Urine	9101	218	1234				1040	224	1264	1039	220	1259		8	8	962	88	1050
Hair	4	32	173				98	29	115				9/	32	801	7.5	-	76
Sputum	126	63	189	62	51	113	20	52	122	72	53	125	7.5	9/	151	99	26	92
Sputum Deposit	78		78	53		53	49		49	45		45	33		33	44		44
Gastric Aspirate	12		12	2		5	3		3	2		2	2		2	_		_
TOTALS	3229	972	4201	130	59	189	3420	1011	4431	3166	903	4069	480	456	936	2812	324	3136

													TbR	Tb Recurrence -	- ao	Tb Re	Tb Recurrence -	- e-
# of Aliquots	*1	12 month	£	18	18 Months	S	77	24 month	_	<u> </u>	End TB Tx	_	Bac	Bacteriological	ical		Clinical	
	BJGMC	BJGMC NIRT	Total	BJGMC NIRT Total	NIRT		BJGMC NIRT		Total	BJGMC NIRT	NIRT	Total	BJGMC NIRT Total	NIRT	Total	BJGMC NIRT	NIRT	Total
Plasma	096	304	1264				229	112	789	54	368	422		91	91	27		27
Plasma for PK																		
PAXgene	901	37	143				7.5	15	90	9	45	51		2	2	3		3
PBMCs	81	8	199				104	27	131	8	105	113		3	3	4		4
DNA											_	_						
QGIT	120		120															
Mtb Isolate																-		_
Urine	846	4	066				298	52	650	47	172	219		4	4	25		25
Hair							8		8	1	21	28				2		2
Sputum	-		-	65	24	88	_		-	2	44	49		2	2	2		2
Sputum Deposit				01		10										3		3
Gastric Aspirate				_		-												
TOTALS	2151	266	2717	9/	24	001	1463	206	1669	127	756	883		27	27	29		29
																	I	

Parent Protocol Banked Specimens Pediatric TB Cohort A

	I	TB Failure -										
# of Aliquots	Bac	Bacteriological	cal	TB Fai	TB Failure - Clinical	inical	n	Unscheduled	d		TOTALS	
	BJGMC NIRT	NIRT	Total	Total BJGMC NIRT	NIRT	Total	ВЈСМС	NIRT	Total	BJGMC	NIRT	Total
Plasma	26		26	81		18	62		62	6303	2312	8615
Plasma for PK				2		2	_	_	2	357	601	466
PAXgene	3		3	2		2	9		9	662	291	953
PBMCs	3		3	2		2	8		8	800	604	1404
DNA				2		2				125	204	329
QGIT				15		15				2114	108	2222
Mtb Isolate	2		2	-		_				65	4	100
Urine	61		19	91		16	26		56	5664	1130	6794
Hair	2		5	3		3	4		4	407	115	522
Sputum	_		_	2		2	5	3	8	553	394	947
Sputum Deposit	_		-	2		2	4		4	322		322
Gastric Aspirate										26		26
TOTALS	09		60	65		65	146	4	150	17392	5308	22700

		Baseline										
# of Aliquots		(< <u>7</u> days)			2 Weeks		1	1 Month		7	2 Month	_
	BJGMC NIRT	NIRT	Total	BJGMC NIRT	NIRT	Total	BJGMC	NIRT	Total	Total BJGMC NIRT	NIRT	Total
Plasma	1121	089	1801				1002	592	1594	1045	919	1991
Plasma for PK							143	80	223			
PAXgene	113	85	198				86	78	176	104	84	188
PBMCs	891	143	311				188	140	328	161	138	335
DNA				2		2						
QGIT	620	120	740				483	801	165	525	96	621
Mtb Isolate	4	39	53	8	13	21	4	7	=	_	5	9
Urine	903	334	1237				89/	320	1088	823	324	1147
Hair	126	38	164				29	32	16		2	2
Sputum	86	138	236	19	94	155	26	88	44	63	88	151
Sputum Deposit	73		73	43		43	44		44	37		37
Gastric Aspirate	2		2									
TOTALS	3238	1577	4815	114	107	221	2845	1445	4290	2795	1356	4151
	ļ	١	١			١		١			l	

				l								Γ
# of Aliquots		2 Month		u1	5 Month	_		6 month			12 month	_
	BJGMC NIRT	NIRT	Total	Total BJGMC NIRT	NIRT	Total	Total BJGMC	NIRT	Total	Total BJGMC NIRT	NIRT	Total
Plasma	1045	919	1991		48	48	920	091	1080	718	009	1318
Plasma for PK				112	78	190						
PAXgene	<u>5</u>	84	881		9	9	94	23	111	72	75	147
PBMCs	161	138	335		15	15	174	31	205	140	142	282
DNA				84	190	274						
QGIT	525	96	621				285		285	104		104
Mtb Isolate	_	5	9	_	4	5						
Urine	823	324	1147				755	801	863	562	288	850
Hair		5	5	52	32	84	63	_	64			
Sputum	63	88	151	54	129	183	95	29	85			
Sputum Deposit	37		37	31		31	26		26	_		_
Gastric Aspirate												
TOTALS	2795	1356	4151	334	502	836	2373	352	2725	1597	1105	2702

										Tb R	Tb Recurrence -	- ao	Tb R	Tb Recurrence -	- ao
# of Aliquots	11	18 Months	SI	2,	24 month	_	₩.	End TB Tx		Bac	Bacteriological	ical		Clinical	
	BJGMC	NIRT	Total	BJGMC NIRT Total BJGMC NIRT		Total	Total BJGMC NIRT Total BJGMC NIRT Total BJGMC NIRT	NIRT	Total	BJGMC	NIRT	Total	ВЈСМС		Total
Plasma				551	368	616	208	009	808	31		31	20		20
Plasma for PK															
PAXgene				26	45	101	21	7.5	96	3	-	4	4		4
PBMCs				66	16	190	36	126	162	4	3	7	7		7
DNA															
QGIT							45	09	105						
Mtb Isolate		2	2							_		1			
Urine				448	091	809	891	288	456	21	4	25	35		35
Hair				2		5	22	25	47	4		4	9		9
Sputum	55	55	110				15	78	93	2	-	9	3		3
Sputum Deposit	6		6				3		3				2		2
Gastric Aspirate															
TOTALS	64	22	121	1159	664	1823	518	518 1252	1770	69	6	78	107		107
												l			l

	F	TB Failure -	<u>.</u>									
# of Aliquots	Bac	Bacteriological	ical	TB Fai	TB Failure - Clinical	inical	5	Unscheduled	D		TOTALS	
	BJGMC NIRT	NIRT	Total	Total BJGMC NIRT	NIRT	Total	BJGMC	NIRT	Total	BJGMC	NIRT	Total
Plasma							011	81	128	5756	3664	9420
Plasma for PK							2		2	257	158	415
PAXgene							=		=	576	472	1048
PBMCs							21		21	1034	829	1863
DNA							_		_	87	190	277
QGIT										2062	384	2446
Mtb Isolate										29	72	101
Urine							08	2	82	4563	1830	6393
Hair							9	4	10	343	133	476
Sputum							-		_	467	712	1179
Sputum Deposit							_	12	13	270		270
Gastric Aspirate										2		2
TOTALS							233	36	269	15446	8444	23890

Specimen		ã	Baseline (≤14 days)	(≤14 d	ays)					2	2 Weeks					-	Month		
	BJGMC	NIRT	CMC	IPMER	1VDRG	Hinduja	Total	CMC JIPMERMYDRCHinduja Total BJGMC NIRT	NIRT	CMC	CMC JIPMERMVDRCHinduja Total	CHinduja 1	otal B	BJGMC	NIRT	MC JI	CMC JIPMERMVDRCHinduja Total)RCHin	Juja To
Plasma	256	225	001	866	421		2000							225	213				438
Plasma for PK														121	228			2	56 505
PAXgene	212	238	346	6111	421	95	2392							777	777			2	56 505
PBMCs	170	238			295		703							201	777				428
DNA						95	26	9					9						
QGIT	155	69					224							139	22				961
Mtb Isolate	71	220	881	957	404	42	1882	62	194				256	76	130				6 165
Urine	256	556				99	541							225	326			2	56 507
Hair	257	15	220				528							85	31				911
Sputum	891	556	961			33	979	911	228			15	329	122	224				16 362
Sputum Deposit	114						114	94					94	83					83
TOTALS	1659	1499	1050 3074		1541	243	9906	278	422			15	715	1549	1563			<u>-</u>	193 3305

Specimen \ N			2	2 Month	_					5	5 Month						9	6 Month			
	BJGMC NIRT	NIRT	CMC	JIPMER	MVDRG	IPMER MVDRCHinduja Total	Total	BJGMC	NIRT	CMC	JIPMERMYDRCHinduja Total	1VDRG	linduja	Total B	BJGMC	NIRT	CMC J	JIPMERMVDROHinduja Total	IVDRC	linduja	Total
Plasma	218	210			373		801								187	76			273		486
Plasma for PK						46	46	203	213					416						29	29
PAXgene	215	218		1013	373	46	1865		-					_	187	76			273	29	515
PBMCs	203	225			171		669								9/1	76			195		397
DNA						46	46	201	205					406		2				56	31
QGIT	131	46					177								78	2					80
Mtb Isolate	15	25				7	74	5	η					77	01	3					13
Urine	121	217				46	484								681	61				56	237
Hair		7					7	82	37					611	82						82
Sputum	122	220				6	351	901	213					319	102	32				2	136
putum Deposit	88						88	8/						8/	89						89
TOTALS	1213	1195		1013	1017	200	4638	919	169					1366	6201	136			141	811	

Specimen			-	12 Month						_	8 Month	,				2	24 Month	_		
	BJGMC	NIRT	CMC	JIPMER MYDRC Hinduja	VDRC H		Total	BJGMC	NIRT	CMC	JIPMER	JIPMER MVDRC Hinduja	Total	BJGMC	NIRT	CMC	JIPMER 1	JIPMER MVDRC Hinduja	Hinduja	Total
Plasma	173	194					367					137	137	153	155					308
Plasma for PK						9	9													
PAXgene	691	202				9	377					137	137	148	691					317
PBMCs	170	208					378					82	82	149	991					315
DNA						9	9													
QGIT	34						34													
Mtb Isolate	_	-				_	3	2	6				=							
Orine	170	204				9	380							150	154					304
Hair	_						-							59						29
Sputum	13	2					15	811	700				318	_						-
Sputum Deposit	3						3	45					45							
TOTALS	734	811				25	1570	165	209			356	730	630	644					1274

Specimen / N			Ē	End TB Tx	×				TB	Recurre	TB Recurrence- bacteriological	teriologi	cal				TB Recu	TB Recurrence- Clinical	ical	
	BJGMC*	BJGMC* NIRT*		JIPMER#	CMC JIPMER# MVDRC Hinduja	ı	Total	BJGMC	NIRT	CMC	JIPMER	IPMER MVDRC Hinduja	ı	Total	BJGMC	NIRT	CMC	JIPMER MVDRC Hinduja	ORC Hindu	a Total
Plasma	81	189					207	9	13	2				21	3					3
Plasma for PK																				
PAXgene	17	182		36			235	9	13	9	13			38	3					3
PBMCs	81	981					204	9	13			25		4	3					3
DNA		3					3		-					_						
QGIT	5	3					8													
Mtb Isolate		5					5		=	4				15	_					_
Urine	91	061					206	9	13					61	4					4
Hair	81	77					45	9	2	4				12	3					3
Sputum	13	961					500	2	13	4				61	3					3
Sputum Deposit	9						9	3						3	_					-
TOTALS	Ξ	186		98			1128	35	42	20	13	25		172	21					21

Specimen		Ĕ	B Failure	- Bacte	TB Failure- Bacteriological				TB Fai	TB Failure- Clinical	nical					Ü	Unscheduled	P	
	BJGMC	NIRT	CMC	JIPMER	CMC JIPMER MYDRC Hinduja	Total	BJGMC	NIRT	CMC	JIPMER 1	JIPMER MVDRC Hinduja Total	Induja 7		BJGMC	NIRT	CMC	JIPMER	JIPMER MVDRC Hinduja	Total
Plasma	61	-	4			24	9						9	48					48
Plasma for PK																			
PAXgene	61	2	12	33		99	9						9	46					49
PBMCs	11	2				61	9						9	48					48
DNA																			
QGIT	7					7	3						3	7					7
Mtb Isolate	4		4			8	-						_	_	61				20
Urine	61	15				34	9						9	47	7				54
Hair	11		14			31	3						3	4					14
Sputum	14	3	8			25	4						4	4	62				99
Sputum Deposit	6					6	-						_	2					2
TOTALS	125	23	42	33		223	36						36	220	88				308

	Cohort A TBM
Sample	Baseline (≤14 days)
caldillac	CMC
CSF	185
Plasma	163
DNA	55
Urine	
Total	403

Specimen / N							
	BJGMC	NIRT	CMC	JIPMER	JIPMER MYDRC Hinduja	Hinduja	Total
Plasma	1312	1226	601	866	1204		4849
Plasma for PK	424	144				137	1002
PAXgene	1253	1278	372	1214	1204	193	5514
PBMCs	1167	1291			898		3326
DNA	207	211				137	555
QGIT	529	177					136
Mtb Isolate	661	999	202	657	404	59	2487
Urine	1309	1274				193	2776
Hair	265	155	244				966
Sputum	806	1622	214			75	6187
Sputum Deposit	265						565
TOTALS	8530	8341	1141	3169	3680	794	25655

Specimen \ N	a V	Baseline (≤7 days)		2	2 Weeks		1	1 Month		7	2 Month	_	2	5 Month		9	6 month	
,	BJGMC	NIRT	Total	Total BJGMC NIRT		Total	BJGMC NIRT	NIRT	Total	BJGMC NIRT		Total	BJGMC NIRT		Total	BJGMC NIRT	NIRT	Total
Plasma	122	54	176				129	26	185	132	23	185		7	7	121	81	139
Plasma for PK							127	55	182				123	53	176			
PAXgene	104	26	160				111	26	173	132	55	187		8	8	801	11	125
PBMCs	87	55	142				Ξ	26	167	112	54	991		6	6	<u>10</u>	11	121
DNA													123	55	178		_	_
QGIT	34	3	37				39	3	42	36	3	39				23		23
Mtb Isolate	12	=	23	8	7	15	9	5	=	4	2	9						
Urine	130	54	184				132	55	187	131	55	186		2	2	122	77	144
Hair	126	32	158				89	29	26				69	31	100	20	-	71
Sputum	11	37	114	62	47	601	0/	47	111	20	48	118	7.5	44	611	64	24	88
Sputum Deposit	57		57	53		53	48		48	45		45	32		32	44		44
Gastric Aspirate	=		=	4		4	3		3	2		2	2		2	-		-
TOTALS	760	302	1062	127	54	181	850	362	1212	664	270	934	424	500	633	657	001	757

													TB Re	TB Recurrence -	- je	TB Re	TB Recurrence -	- e-	TB	TB Failure -	ļ
Specimen \ N		12 month	<u>-</u>	18	18 Months		24	24 month		Ξ	End TB Tx	J	Bact	Bacteriological	<u>ea</u>	٦	Clinical		Bact	Bacteriological	<u>e</u>
	BJGMC	NIRT	Total	BJGMC	BJGMC NIRT Total	Total	BJGMC	NIRT	Total	BJGMC	NIRT	Total	3JGMC	NIRT	Total	3JGMC	NIRT	Total	BJGMC	NIRT	Total
Plasma	104	37	141				9/	4	06	9	46	52		2	2	3		3	2		7
Plasma for PK																					
PAXgene	103	36	139				7.5	15	06	9	45	SI		2	2	3		3	2		7
PBMCs	16	38	129				74	4	88	5	45	20		2	2	3		3	2		2
DNA											_	-									
QGIT	8		8																		
Mtb Isolate																-		_	2		2
Urine	103	36	139				7.5	13	88	9	43	46		_	_	3		3	2		2
Hair							5		5	9	21	77				2		2	2		2
Sputum	_		_	64	22	98	_		-	5	45	47		2	2	2		2	_		-
Sputum Deposit				01		0										3		3	_		-
Gastric Aspirate				_		-															
TOTALS	410	147	557	7.5	12	26	306	2,6	362	34	243	717		6	6	70		20	4		4

Specimen \ N	TB Fai	TB Failure - Clinical	inical	υN	Unscheduled	pa		TOTALS	
	BJGMC NIRT	NIRT	Total	BJGMC NIRT	NIRT	Total	BJGMC NIRT	NIRT	Total
Plasma	2		2	7		7	704	287	166
Plasma for PK	2		2	_	_	2	253	601	362
PAXgene	2		2	9		9	959	290	948
PBMCs	-		-	7		7	265	290	887
DNA	2		2				125	27	182
QGIT	-		_				141	6	150
Mtb Isolate	_		_				34	25	59
Urine	2		2			7	713	281	994
Hair	2		2	3		3	353	114	467
Sputum	2		2	5	3	8	466	316	815
Sputum Deposit	2		2	3		3	738		298
Gastric Aspirate							24		24
TOTALS	61		61	39	4	43	4399	1778	6177

Parent Protocol N EPTB Cohort A

BJGMC 112	(<7 days)					•											
			2	2 Weeks			I Month		2	2 Month		2	5 Month		9	6 month	
	NIRT	Total	BJGMC NIRT		Total	BJGMC	NIRT	Total	BJGMC NIRT	-	Total	BJGMC NIRT	NIRT	Total	BJGMC NIRT	-	Total
	84	961				001	74	174	105	11	182		4	4	93	20	113
Plasma for PK						66	80	179				98	4	06			
PAXgene 110	84	194				86	78	176	104	84	881		78	78	93	23	911
PBMCs 89	87	176				001	18	181	55	85	140		4	4	93	21	114
DNA			2		2							84	2	68			
QGIT 41	01	51				32	6	41	35	8	43		11	77	61		61
Mtb Isolate 9	61	28	8	8	91	3	5	8	-	5	9						
Urine II2	82	194				26	78	175	103	80	183		3	3	94	76	120
Hair 112	38	150				20	32	82		5	5	48		48	22	_	28
Sputum 69	20	139	09	80	140	55	9/	131	19	28	139	53	32	85	26	76	83
Sputum Deposit 49		49	43		43	42		42	37		37	30	73	103	76		26
Gastric Aspirate 2		2															
TOTALS 705	474	1179	113	88	201	9/9	513	1189	105	422	923	301	280	581	531	117	648

													TB R	TB Recurrence -	- ao
Specimen \ N	1	12 month	_	18	18 Months	S	77	24 month	_	<u> </u>	End TB Tx	×	Bact	Bacteriologocal	ocal
	BJGMC	BJGMC NIRT Total	Total	BJGMC NIRT	NIRT	Total	Total BJGMC NIRT	NIRT	Total	Total BJGMC NIRT	NIRT	Total	BJGMC NIRT	NIRT	Total
Plasma	1/	73	44				22	45	102	21	72	93	3		3
Plasma for PK															
PAXgene	69	73	142				55	45	001	21	74	95	3	-	4
PBMCs	71	74	145				55	45	001	21	73	94	3	_	4
DNA															
QGIT	7		7							3	5	8			
Mtb Isolate					2	2							2		2
Urine	20	0/	140				95	40	96	21	70	16	3	_	4
Hair							4		4	17	25	46	3		3
Sputum				54	53	107				51	71	98	3	_	4
Sputum Deposit	_		_	6		6				3		3			
Gastric Aspirate															
TOTALS	289	290	579	£9	55	118	777	175	402	126	390	516	20	4	24

Parent Protocol N EPTB Cohort A

Specimen	TB Fai	TB Failure - Clinical	inical	un	Unscheduled	pa		TOTALS	
	BJGMC NIRT	NIRT	Total	BJGMC	NIRT	Total	BJGMC	NIRT	Total
Plasma				9		10	575	449	1024
Plasma for PK				_		_	981	158	344
PAXgene				01		10	995	466	1032
PBMCs				01		10	200	472	972
DNA				_		_	87	11	164
QGIT							137	32	691
Mtb Isolate					_	-	23	43	99
Orine				6	_	10	695	448	1017
Hair				3		3	302	133	435
Sputum				-	10	=	431	538	696
Sputum Deposit				_		1	243		243
Gastric Aspirate	41						2		2
TOTALS				46	12	58	3621	2816	6437

Parent Protocol Banked Specimens Cohort B | Samples= # of Aliquots

Complex		Baselir	Baseline (<14 days)	days)			4	4 Months				80	8 Months				12	I 2 Months		
Samples	BJGMC	NIRT	JIPMER BMMRC		Total	ВЈСМС	NIRT	JIPMER E	BMMRC	Total	вјемс	NIRT	JIPMER F	BMMRC	Total	ВЈБМС	NIRT	JIPMER	JIPMER BMMRC	Total
Plasma	14471	3920	728	2370	11489	3171	3620		1365	8156				984	984	3034	3247	32	208	7021
Plasma for PK																				
PAXgene	392	523	3122		4037	302	472			774						300	426	69		795
PBMCs	908	1242		1580	3628	628	1050		910	2588				929	929	584	840		472	1896
DNA	456	210		1580	2546	_				-										
QGIT	5315	5352			10667	3913	2316			6229						3774	9111			4890
Mtb Isolate		14			14		23			23										
Urine	3629	2128			5757	2607	1720			4327						2570	1748			4318
Hair	529	е			562	420	т			423						351				351
Sputum	390	969			9801	178	528			902						-				_
Sputum Deposit	786				286	691				691						2				2
Gastric Aspirate	14				14	4				4										
TOTALS	16318 14415	14415	3850	5530	40113	11393	9732		2275	23400				1640	1640	91901	7377	101	1180	19274

Samples		_	16 Months	hs			7	20 Months	51			2	24 Months	su	
1	ВЈGМС	NIRT	JIPMER	JIPMER BMMRC Total	Total	BJGMC	NIRT	JIPMER	JIPMER BMMRC	Total	ВЈGМС	NIRT	JIPMER	JIPMER BMMRC Total	Total
Plasma				603	603				450	450				633	633
Plasma for PK															
PAXgene															
P BMCs				402	402				300	300				422	422
DNA												_			_
QGIT											3873	108			4674
Mtb Isolate															
Urine												4			4
Hair															
Sputum															
Sputum Deposit															
Gastric Aspirate															
TOTALS				1005	1005				750	750	3873	908		1055	5734
					l		l								

Parent Protocol Banked Specimens Cohort B | Samples = # of Aliquots

Some	Pre	valent	Prevalent TB- Bacteriologica	iologica	-	_	Prevale	Prevalent TB- Clinical		lnc	ident T	B-Bacte	Incident TB- Bacteriological	P		Inciden	Incident TB- Clinical	linical	
Samples	BJGMC	NIRT	JIPMER BMMRC	1MRC 7	Lotal	ВЈБМС	NIRT	JIPMER BMMRC	Total	BJGMC	NIRT	JIPMER E	JIPMER BMMRC Total	_	BJGMC	NIRT	JIPMER BMMRC	SMMRC	Total
Plasma	2	13	6		98	125			125	40		1		14	93				93
Plasma for PK																			
PAXgene	7	5	18		30	13			13	4		6		13	8				8
PBMCs	6	01			61	21			21	6				6	17				17
DNA	9	4			01	41			14	1				_	1				_
QGIT	8	2			89	176			176	57				57	105				105
Mtb Isolate	2				2					3				3					
Urine	95	5			19	011			110	25				25	72				72
Hair	П				=	21			21	4				4	12				12
Sputum	6	2			4	13			13	3				က	3				3
Sputum Deposit	4				4	12			12						4				4
Gastric Aspirate						4			4										
TOTALS	252	47	27		326	509			509	146		01		156	315				315

Samples		Unsc	Unscheduled Visit	Visit			_	TOTALS	S	
	BJGMC	NIRT	JIPMER	JIPMER BMMRC	Total	BJGMC	NIRT	JIPMER	JIPMER BMMRC	Total
Plasma	832				832	11830	10800	770	7113	30513
Plasma for PK										
PAXgene	98		12		88	1112	1426	3230		5768
PBMCs	091				160	2234	3142		4742	10118
DNA						479	515		1580	2574
QGIT	1287				1287	18584	9590			28174
Mtb Isolate		4			4	2	89			73
Urine	669	56			755	89/6	1995			15429
Hair	96				%	1474	9			1480
Sputum	2	68			16	299	1318			1917
Sputum Deposit	7				7	484				484
Gastric Aspirate						22				22
TOTALS	3169	149	12		3330	46591 32526	32526	4000	13435	96552

Parent Protocol N Cohort B | Samples = N Number of Individuals

		Baselin	Baseline (≤14 days)	days)			4	4 Months		\vdash		8	8 Months		\vdash		12 M	12 Months		L		1 9 W	16 Months		Γ
Samples	BJGMC	NIRT	JIPMER E	BMMRC	Total	ВЈСМС	NIRT	JIPMER B	BMMRC 1	Total	BJGMC 1	NIRT	JIPMER BN	BMMRC T	Total Bj	BJGMC N	NIRT JIP	IPMER BMN	BMMRC To	Total B	ВЈСМС	NIRT	JIPMER BM	BMMRC T	Total
Plasma	469	492	963	168	2815	322	453		306	1801				202	202	315	404		123 8	842				75	75
Plasma for PK																									
PAXgene	168	521	788		1700	295	470			292						300	425 2	27	7	752					
PBMCs	416	521			937	322	476			862					- '	318	44		7	762					
DNA	456	210		168	1857	-				_															
QGIT	443	515			928	283	233			919						1 772	811		3	395					
Mtb Isolate		34			34		91			91															
Urine	194	205			696	320	416			736						321 4	426		7	747					
Hair	174	3			474	331	3			334						322			3.	322					
Sputum	280	488			768	174	438			612						_				_					
Sputum Deposit	224				224	991				991						2				2					
Gastric Aspirate	=				=	4				4															
TOTALS	3622	3586	1751	1782	10741	2218	2505		306	5029				202 2	202	9281	1817 2	27 13	123 38	3823				7.5	75

o la constant		2	20 Months	SI			2	24 Months	SI		Pre	valent 7	Prevalent TB- Bacteriological	riologic	F I		Prevalent TB- Clinical	It TB-C	linical		Incide	ent TB	Incident TB. Bacteriological	iologica	
adinpies	ВЈСМС	NIRT	JIPMER	JIPMER BMMRC Total BJGMC	Total		NIRT	JIPMER	JIPMER BMMRC	Total	ВЈСМС	NIRT	JIPMER BMMRC		Total	Вјдмс	NIRT	JIPMER B	BMMRC .	Total	BJGMC N	NIRT	JIPMER BI	BMMRC	Total
Plasma				39	39				92	76	9	13			61	14					4				4
Plasma for PK																									
PAXgene											9	5	8		61	13					4		_		5
PBMCs											5	01			15	14					4				4
DNA							-			-	9	4			01	14					1				_
QGIT						285	901			391	9	5			=	14					4				4
Mtb Isolate											2				2						3				3
Urine							-			-	9	2			=	15					4				4
Hair											9				9	15					4				4
Sputum											4	5			6	6					3				3
Sputum Deposit											2				2	9									
Gastric Aspirate																8									
TOTALS				39	39	285	108		76	469	49	47	8		104	111					31		_		32

Parent Protocol N Cohort B | Samples = N number of Individuals

Solumes		Incide	Incident TB- Clinical	Slinical			Unsci	Unscheduled Visit	Visit				TOTALS	ا ا	
Sald library	вјемс	NIRT	JIPMER	IPMER BMMRC	Total	ВЈБМС	NIRT	JIPMER	BMMRC	Total	ВЈБМС	NIRT	JIPMER	BMMRC	Total
Plasma	10				01	82				82	1222	1362	696	1712	5259
Plasma for PK															
PAX gene	8				8	18				81	8601	1421	824		3343
PBMCs	10				01	82				82	1/11	1451			2622
DNA	1				-						479	515		168	1885
QGIT	8				8	06				90	1410	776			2387
Mtb Isolate							4			4	2	54			59
Urine	6				6	84	4			98	1220	1364			2584
Hair	6				6	83				83	1241	9			1247
Sputum	3				3	2	62			64	476	993			1469
Sputum Deposit	4				4	5				5	404				409
Gastric Aspirate											81				18
TOTALS	62				62	609	80			589	8749	8143	1871	2603	21282

RePORT India Common Protocol I. Enrollment / Disposition (Cohort A) Data Up to December 2018

		RePORT	Sites (Sit	e Numb	er)	Total
Description	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	
Number enrolled in Common Protocol (n)	40	200	120	134	216	710
Number previously enrolled in Cohort B	0	I (0.5%)	0	0	I (0.46%)	2 (0.28%)
Number enrolled in the study other than the Parent Protocol	0	16 (8%)	0	0	0	16 (2.25%)
Number completed follow-up (6 months post treatment)	0	25 (12.5%)	4 (3.33%)	22 (16.42%)	48 (22.22%)	99 (13.94%)
Reason for NOT completing follow-up through the 6-Month Post-Treatment visit						
Participant was provisionally enrolled but not confirmed to have active pulmonary TB	0	0	0	l (0.75%)	21 (9.72%)	22 (3.1%)
Participant was provisionally enrolled but was confirmed by a culture that was conducted on respiratory secretions obtained by bronchoalveolar lavage or bronchial wash	0	0	0	0	0	0
More than I week of anti-TB therapy was received before the required baseline specimens for storage were collected	0	0	0	0	0	0
The required baseline biorepository specimens for storage were not collected	0	0	0	0	0	0
HIV test was not completed within seven weeks after enrollment	0	0	0	0	0	0
Met one of the following TB outcomes: Treatment Failure, TB Relapse, Emerging Resistance	0	0	2 (1.67%)	9 (6.72%)	8 (3.7%)	19 (2.68%)
Physician decision (Investigator determines that further participation would be detrimental to the health or well-being of the subject)	0	0	0	3 (2.24%)	0	3 (0.44%)
Inadvertent enrollment	0	3 (1.5%)	0	0	0	3
Withdrawal by participant	0	2 (1%)	I (0.83%)	3 (2.24%)	4 (1.85%)	10 (1.41%)
Withdrawal by parent/guardian	0	0	0	0	0	0
Lost to follow-up	0	0	0	0	I (0.46%)	ı
Moved out of area	0	0	0	0	0	0

RePORT India Common Protocol I. Enrollment / Disposition (Cohort A) Data Up to December 2018

		RePORT	Sites (Sit	te Numb	er)	Total
Description	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	
Study terminated by funding organization / other government agency	0	0	0	0	0	0
Death	0	3 (1.5%)	0	0	4 (1.85%)	7 (0.99%)
Other *	I (2.5%)	16 (8%)	0	0	9 (4.17%)	26 (3.66%)
*CMC	Subject not	willing to give	e sputum and	blood samp	le	I
*JIPMER	Other					16
	DEFAULTE	:D				5
	sputum cor	ntaminated				3
	scanty					2
	MODIFIED	REGIMEN				2
	PATIENT S	HIFTED TO	MODIFIED R	EGIMEN		I
	CAT-II					I
	CULTURE	NEGATIVE				I
	UNABLE T	O PRODUCI	SPUTUM			I
*BJGMC	Other					9
	ENROLLED	O IN VPM 100	2 STUDY			4
	Patient defa	ulted treatme	ent			5

RePORT India Common Protocol 2. Enrollment / Disposition (Cohort B) Data Up to December 2018

Description	ReP	ORT Site	s (Site Num	ber)	
	JIPMER (102)	NIRT (105)	BJGMC (106)	BMMRC (107)	Total
Number enrolled in Common Protocol (n)	176	223	259	219	777
Number enrolled in a study other than the parent protocol	30 (17.05%)	0	0	0	30 (3.86%)
Number of completed follow-up (Month 24 visit)	0	0	0	0	0
Reason for not completing follow-up through the Month 24 visit					
Participant developed active TB	0	0	4 (1.54%)	0	4 (0.51%)
Physician decision (Investigator determines that further participation would be detrimental to the health or well-being of the subject)	0	0	0	0	0
Inadvertent enrollment	0	0	0	0	0
Withdrawal by participant	0	0	2 (0.77%)	0	2 (0.26%)
Withdrawal by parent/guardian	0	0	0	0	0
Lost to follow up	0	I (0.45%)	I (0.39%)	0	2 (0.26%)
Moved out of area	0	0	0	0	0
Study terminated by funding organization or other government agency	0	0	0	0	0
Death	0	0	0	0	0
Other*	I (0.57%)	0	32 (12.36%)	0	33 (4.25%)

*IIPMER	SAMPLE NOT COLLECTED	
,		-
*BJGMC	Index was terminated from study because B/L cultures	32
_	,	
	were negative.	1

RePORT India Common Protocol 3. Final Outcome Status (Cohort A) Data Up to December 2018

		RePORT S	Sites (Site	Number)		
Description	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	Total
Number enrolled in Common Protocol (n)	40	200	120	134	216	710
Bacteriologic cure	0	6 (3%)	5 (4.17%)	20 (14.93%)	42 (19.44%)	73 (10.28%)
Bacteriologic status indeterminate (treatment complete)	0	39 (19.5%)	0	0	3 (1.39%)	42 (5.92%)
Bacteriologic failure	0	0	0	6 (4.48%)	2 (0.93%)	8 (1.13%)
Bacteriologic relapse	0	0	0	2 (1.49%)	0	2 (0.28%)
Emerging resistance	0	0	2 (1.67%)	0	0	2 (0.28%)
Clinical response (For participants ≤14 years of age who did not have bacteriologic documentation at baseline)	0	0	0	0	0	0
Clinical failure	0	0	0	0	2 (0.93%)	2 (0.28%)
Clinical relapse	0	0	0	0	0	0
Not Tuberculosis	0	0	0	0	0	0
Death	0	3 (1.5%)	0	0	4 (1.85%)	7 (0.99%)
Treatment incomplete	0	5 (2.5%)	0	3 (2.24%)	5 (2.31%)	13 (1.83%)
Lost to follow-up/unknown	0	14 (7%)	I (0.83%)	2 (1.49%)	3 (1.39%)	20 (2.82%)

RePORT India Common Protocol 4. Final Outcome Status (Cohort B) Data Up to December 2018

Description	R	ePORT Sit	es (Site Numb	oer)	
Description	JIPMER (102)	NIRT (105)	BJGMC (106)	BMMRC (107)	Total
Number enrolled in Common Protocol (n)	176	223	259	219	777
No TB	0	0	2 (0.77%)	0	2 (0.26%)
Definite case	0	0	0	0	0
Probable case	0	0	4 (1.54%)	0	4 (0.51%)
Possible case	0	0	0	0	0
Death	0	0	0	0	0
Lost to follow-up/ unknown	I (0.57%)	I (0.45%)	I (0.39%)	0	3 (0.39%)

RePORT India Common Protocol 5. Demographics Data Up to December 2018

				RePORT	Sites (Si	te Numb	er)		
Description	CMC (101)		1ER 02)	MVDRC (103)		RT 05)	BJ G (10	MC 06)	BMMRC (107)
	Cohort A	Cohort A	Cohort B	Cohort A	Cohort A	Cohort B	Cohort A	Cohort B	Cohort B
Number enrolled in Common Protocol (n)	40	200	176	120	134	223	216	259	219
Age, Median (Min – Max)	37.5 (18 - 73)	44 (16 - 79)	29.5 (7 - 75)	41.5 (17 - 60)	43 (5 - 69)	34 (0 - 72)	28 (5 - 67)	17 (1 - 67)	30 (9 - 60)
Number of male participants	26 (65%)	160 (80%)	55 (31.2%)	83 (69.17%)	100 (74.63%)	83 (37.22%)	125 (57.87%)	123 (47.49%)	96 (43.65%)
Number of female participants	14 (35%)	40 (20%)	121 (68.7%)	37 (30.83%)	34 (25.37%)	140 (62.78%)	91 (42.13%)	136 (52.51%)	123 (56.3%)
Number of pregnant women	0	0	0	0	0	0	0	(0.39%)	0

RePORT India Common Protocol 6. Culture Results Data Up to December 2018

					Study	Visits		
Description	Baseline	Month I	Month 2	Month 3	Month 6	End of Treatment	Treatment Failure/Relapse/ Withdrawal	TB Activation Eval
Solid Culture Resu	lts							
Negative for Mycobacterium Tuberculosis complex	118	290	326	0	0	169	16	5
Positive for Mycobacterium Tuberculosis complex	301	101	20	0	0	4	8	0
Positive for non- tuberculosis mycobacteria (NTM)	6	6	П	0	0	5	0	0
Contaminated	11	12	16	0	0	3	I	0
Liquid Culture Res	ults							
Negative for Mycobacterium Tuberculosis complex	60	181	271	0	0	132	16	6
Positive for Mycobacterium Tuberculosis complex	415	177	37	0	0	9	7	0
Positive for non- tuberculosis mycobacteria (NTM)	6	5	2	0	0	3	0	0
Contaminated	25	57	55	0	0	38	I	0

RePORT India Common Protocol
7. Co-Enrollment Status by Site
(Cohort A and Cohort B)
Data Up to December 2018

				ReP	RePORT Study Sites	idy Sites					
Description	CMC (101)	rait (JIPMER (102)	MVDRC (103)	ΞΞ	NIRT (105)	BJGMC (106)	MC 6)	BMMRC (107)	Ĕ	Total
	Cohort A	Cohort A	Cohort B	Cohort A	Cohort A	Cohort B	Cohort A	Cohort B	Cohort B	Cohort A	Cohort B
Co-Enrolled Study	tudy										
Number											
enrolled in	ş	900	174	97.	761	200	717	250	910	410	111
Common	2	207	<u>•</u>	2	2	577	917	67	617	?	
Protocol (n)											
Protocol I											
(VPM 1002-	0	٣	,	2	0	,	7	,	,	12	•
IN-3.01 TBR)											
Protocol 2											
(Depression							38	26	9	38	26
Module)											
Protocol 3											
(TB		43								4	0
Pregnancy)											
Protocol 4											
Protocol 5											
Protocol 6											
Protocol 7											
Protocol 8											
Protocol 9											

RePORT India Common Protocol 8. IGRA Testing Results for Cohort B Data Up to December 2018

	Ref	PORT Study	Sites (Site Nun	nber)	
At Baseline IGRA Results	JIPMER (102)	NIRT (105)	BJGMC (106)	BMMRC (107)	Total
Number enrolled in Common Protocol (n)	176	223	259	219	777
IGRA test Expected	176	223	259	219	777
IGRA test Performed	166 (94.32%)	206 (92.38%)	256 (98.84%)	173 (78.9%)	649 (83.53%)
IGRA test Positive Results	100 (60.24%)	120 (58.25%)	155 (60.55%)	91 (52.6%)	387 (59.63%)
IGRA test Negative Results	61 (36.75%)	85 (41.26%)	98 (38.28%)	80 (46.2%)	253 (38.98%)
IGRA Indeterminant	5 (3.01%)	I (0.49%)	4 (1.56%)	2 (1.15%)	10 (1.54%)
Month 4-6	JIPMER (102)	NIRT (105)	BJGMC (106)	BMMRC (107)	Total
IGRA test Expected	9	103	104	80	323
IGRA test Performed	2 (22%)	20 (19.42%)	54 (51.92%)	0	76 (23.53%)
IGRA test Positive Results	I (50%)	7 (35%)	12 (22.22%)	0	20 (26.32%)
IGRA test Negative Results	I (50%)	13 (65%)	42 (77.78%)	0	56 (73.68%)
IGRA Indeterminant	0	0	0	0	0
Month 12	JIPMER (102)	NIRT (105)	BJGMC (106)	BMMRC (107)	Total
IGRA test expected	6	83	50	0	139
IGRA test Performed	0	3 (3.61%)	0	0	3 (2.16%)
IGRA test Positive Results	0	2 (66.67%)	0	0	2 (66.67%)
IGRA test Negative Results	0	(33.33%)	0	0	01 (33.33%)
IGRA Indeterminant	0	0	0	0	0

RePORT India Common Protocol 9. Demographics for Cohort B Data Up to December 2018

			RePOR	Γ Study	Sites (Si	ite Numb	per)		
	JIPN (10	1ER 02)	NIF (10		BJG (10	MC 06)	BMMRC (107)		
Description	Household members	Actual Enrolled	Household members	Actual Enrolled	Household members	Actual Enrolled	Household members	Actual Enrolled	
	603	176	934	223	1254	259	549	219	
Children (Age ≤I4)		34		32		63		8	
Male		55		83		123		96	
Female		121		140		136		123	
Pregnant		0		0		I		0	
HIV		0		0		4		0	
Diabetes		0		0		0		0	

RePORT India Common Protocol 10. TB Diagnostic Test for Cohort A & Cohort B Data Up to December 2018

	RePORT Study Sites (Site Number)										
Description	CMC (101)	JIPI (10		MVDRC (103)	NIRT	(105)		MC 06)	BMMR C (107)	To	otal
	Cohort A	Cohort A	Cohort B	Cohort A	Cohort A	Cohort B	Cohort A	Cohort B	Cohort B	Cohort A	Cohor B
	Smear Test										
Expected*	102	569	9	507	376	I	676	5	0	2145	15
Performed	101 (99%)	380 (66.78 %)	0	507 (100%)	375 (99.73 %)	I (100%)	674 (99.7 %)	5 (100%)	0	1952 (91%)	6 (40%)
Positive Results	34 (34%)	209 (55%)	0	215 (42.41%)	178 (47.47 %)	0	119 (17.66 %)	0	0	722 (36.99 %)	0
Negative Results	67 (66%)	171 (45%)	0	290 (57.2%)	198 (52.8 %)	(100%)	555 (82.34 %)	5 (100%)	0	1229 (62.96 %)	6 (100%)
	•			L,	J culture	e		'	1		
Expected*	102	569	9	507	376	I	676	5	0	2145	15
Performed	I	0	0	507 (100%)	369 (98.14 %)	I (100%)	614 (90.83 %)	4 (80%)	0	1490 (69.46 %)	5 (33.33%)
Positive Results**	I	0	0	188 (37.08%)	87 (23.58 %)	0	159 (25.9 %)	0	0	434 (29.13 %)	0
Negative Results	0	0	0	268 (52.86%)	218 (59.08 %)	l (100%)	434 (70.68 %)	4 (100%)	0	920 (61.74 %)	5 (100%)
Contaminated	0	0	0	23 (4.54%)	0	0	20 (3.26 %)	0	0	43 (2.89%	0
	•			MIG	IT Cultu	ıres		'	1	_	
Expected*	102	569	9	507	376	I	676	5	0	2145	15
Performed	100 (98%)	467 (82.07 %)	9 (100%)	0	370 (98.4 %)	I (100%)	634 (93.79 %)	5 (100%)	0	1487 (69.32 %)	15 (100%)
Positive Results**	44 (44%)	255 (54.6 %)	Ó	0	159 (42.97 %)	0	231 (36.44 %)	Ó	0	645 (43.38 %)	0
Negative Results	56 (56%)	139 (29.76 %)	5 (55.56 %)	0	139 (37.57 %)	I (100%)	363 (57.26 %)	5 (100%)	0	655 (44.05 %)	(73.33%)
Contaminated	0	73 (15.63 %)	4 (44.44 %)	0	55 (14.86 %)	0	46 (7.26 %)	Ó	0	174 (11.7%)	4 (26.67%)

^{*} Number of forms filled for CRF F3.

^{**} Positive for Mycobacterium Tuberculosis complex

RePORT India Consortium 11. Common Protocol Cohort A Banked Specimens by Visit Type and Totals by CRU Data Up to December 2018

			Base	line			Month I							
Specimen Type	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	Total	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	Tota I		
E/R**	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R		
Number enrolled in Common Protocol (n)	40	200	120	134	216	710	40	200	120	134	216	710		
Number of visits done	40	200	120	134	216	710	33	178	99	121	202	633		
Plasma	40	180	92	118	210	640	33	141	73	106	182	535		
PAX gene	40	179	108	Ш	208	646	33	137	88	100	184	542		
PBMCs	40	181	105	111	214	65 I	33	141	84	99	185	542		
DNA	40	179	103	119	210	65 I	0	0	0	I	0	I		
Urine	40	180	76	121	209	626	34	137	64	108	183	526		
Saliva	38	179	72	84	212	585	0	0	0	0	0	0		
Sputum	40	200	200	124	212	776	34	131	166	108	178	617		
Mtb Isolates	4	147	66	82	143	438	0	0	0	0	3	3		
QGIT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		
Gastric aspirate	0	0	0	0	0	0	0	0	0	0	0	0		

RePORT India Consortium II. Common Protocol Cohort A Banked Specimens by Visit Type and Totals by CRU CONTINUED Data Up to December 2018

Sunsitua			Mor	nth 2					Мо	nth 3		
Specimen Type	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	Total	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	Total
E/R**	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R
Number enrolled in Common Protocol (n)	40	200	120	134	216	710	40	200	120	134	216	710
Number of visits done	27	159	79	107	186	558	0	0	ı	0	0	l u
Plasma	29	109	66	98	165	467	0	0	0	0	0	0
PAX gene	29	106	79	96	164	474	0	0	0	0	0	0
PBMCs	29	107	78	98	171	483	0	0	0	0	0	0
DNA	29	107	76	91	165	468	0	0	0	0	0	0
Urine	29	107	60	102	166	464	0	0	0	0	0	0
Saliva	0	0	0	0	2	2	0	0	0	0	0	0
Sputum	28	102	148	109	166	553	0	0	0	0	0	0
Mtb Isolates	0	0	0	0	0	0	0	0	0	0	0	0
QGIT	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Gastric aspirate	0	0	0	0	0	0	0	0	0	0	0	0

RePORT India Consortium II. Common Protocol Cohort A Banked Specimens by Visit Type and Totals by CRU CONTINUED Data Up to December 2018

			Mon	th 6				Er	nd of tre	eatme	nt	
Specimen Type	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	Total	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	Total
E/R**	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R
Number enrolled in Common Protocol (n)	40	200	120	134	216	710	40	200	120	134	216	710
Number of visits done	0	0	ı	0	0	ı	6	90	50	66	95	307
Plasma	0	0	0	0	0	0	6	57	41	57	76	237
PAX gene	0	0	0	0	0	0	6	54	44	58	77	239
PBMCs	0	0	0	0	0	0	6	57	47	61	79	250
DNA	0	0	0	0	0	0	6	54	38	61	77	236
Urine	0	0	0	0	0	0	6	55	32	59	79	231
Saliva	0	0	0	0		0	6	55	16	60	81	218
Sputum	0	0	0	0	0	0	0	0	0	0	0	0
Mtb Isolates	0	0	0	0	0	0	0	0	0	3	0	3

RePORT India Consortium II. Common Protocol Cohort A Banked Specimens by Visit Type and Totals by CRU CONTINUED Data Up to December 2018

Specimen		Tre	eatment	- Failı	ıre				Rela	pse		
Туре	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	Total	CMC (101)	JIPMER (102)	MVDRC (103)	NIRT (105)	BJGMC (106)	Total
E/R **	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R
Number enrolled in Common Protocol (n)	40	200	120	134	216	710	40	200	120	134	216	710
Number of visits done	0	0	0	6	4	10	0	0	0	2	0	2
Plasma	0	0	0	5	4	9	0	0	0	I	0	I
PAX gene	0	0	0	4	4	8	0	0	0	I	0	I
PBMCs	0	0	0	6	4	10	0	0	0	I	0	ı
DNA	0	0	0	5	4	9	0	0	0	I	0	ı
Urine	0	0	0	5	0	5	0	0	0	I	0	ı
Saliva	0	0	0	6	4	10	0	0	0	2	0	2
Sputum	0	0	0	0	3	3	0	0	0	0	0	0
Mtb Isolates	0	0	0	ı	I	2	0	0	0	0	0	0

RePORT India Consortium Common Protocol Cohort B

12. Banked Specimens by Visit Type and Totals by CRU Data Up to December 2018

			Baseline	9			М	onths 4 t	:o 6	
Specimen Type	JIPMER (102)	NIRT (105)	BJGMC (106)	BMMRC (107)	Total	JIPMER (102)	NIRT (105)	BJGMC (106)	BMMRC (107)	Total
E/R **	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R
Number enrolled in Common Protocol (n)	176	223	259	219	777	176	223	259	0	777
Number of visits done	176	223	259	219	777	22	163	176	0	361
Plasma	165	202	249	218	731	9	18	66	0	84
PAX gene	162	186	249	219	712	9	18	65	0	83
PBMCs	166	192	259	217	733	9	20	66	0	86
DNA	162	199	252	219	729	9	20	60	0	80
Urine	165	201	247	218	728	9	21	63	0	84
Sputum	9	0	0	0	9	0	0	0	0	0
Mtb Isolates	0	0	0	0	0	0	0	0	0	0
QGIT	0	27	245	0	0	9	4	61	0	0
Gastric aspirate	0	0	0	0	0	0	0	0	0	0
Saliva	162	149	250	219	780	9	21	68	0	98

RePORT India Consortium Common Protocol Cohort B

12. Banked Specimens by Visit Type and Totals by CRU CONTINUED

Data Up to December 2018

	Month 12							Month 2	24	
Specimen Type	JIPMER (102)	NIRT (105)	BJGMC (106)	BMMRC (107)	Total	JIPMER (102)	NIRT (105)	BJGMC (106)	BMMRC (107)	Total
E/R **	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R	E/R
Number enrolled in Common Protocol (n)	176	223	259	0	777	176	223	259	0	777
Number of visits done	13	47	78	0	138	0	0	0	0	0
Plasma	5	6	16	0	22	0	0	0	0	0
PAX gene	5	3	16	0	19	0	0	0	0	0
PBMCs	5	6	17	0	23	0	0	0	0	0
DNA	5	6	15	0	21	0	0	0	0	0
Urine	5	5	15	0	20	0	0	0	0	0
Sputum	0	0	0	0	0	0	0	0	0	0
Mtb Isolates	0	0	0	0	0	0	0	0	0	0
QGIT	5	2	16	0	23	0	0	0	0	0
Gastric aspirate	0	0	0	0	0	0	0	0	0	0
Saliva	5	П	15	0	31	0	0	0	0	0

		TB Activa	tion and Ev	aluation	
Specimen Type	JIPMER (102)	NIRT (105)	BJGMC (106)	BMMRC (107)	Total
E/R **	E/R	E/R	E/R	E/R	E/R
Number enrolled in Common Protocol (n)	176	223	259	219	777
Number of visits done	0	0	8	0	8
Plasma	0	0	7	0	7
PAX gene	0	0	7	0	7
PBMCs	0	0	7	0	7
DNA	0	0	7	0	7
Urine	0	0	7	0	7
Sputum	0	0	5	0	4
Mtb Isolates	0	0	0	0	0
QGIT	0	0	7	0	0
Gastric aspirate	0	0	0	0	0
Saliva	0	0	7	0	0

Young Investigator Abstracts

RePORT India

8TH ANNUAL JOINT LEADERSHIP MEETING

BIOMARKERS & BEYOND

CHENNAI | 4-6 FEB 2019

This page is intentionally blank

	YOUNG INVESTIGATOR ABSTRACTS								
Abstract Number	Title	Presenter/ Submitting Author							
1.	Impact of Standard or Increased Moxifloxacin Dose among MDR- TB Patients in Mumbai with Low-Level Resistance	Jeffrey Tornheim							
2.	Host Lipidomic Profile Associated with Adverse Tuberculosis Treatment Outcomes	Rupak Shivakoti							
3.	Linezolid Resistance in Mycobacterium tuberculosis Isolates at a Tertiary Care Center in Mumbai, India, by Whole Genome Sequencing	Remya Nambiar							
4.	Plasma Drug Concentrations of Isoniazid and Rifampicin in Pulmonary Tuberculosis Patients with Diabetes mellitus	Jedidiah Deva							
5.	Simultaneous Rapid Detection of Tubercular Meningitis and Drug Susceptibility Testing Using Pyrosequencing on Uncultured Cerebrospinal Fluid Samples	Kanchan Ajbani							
6.	Whole Genome Sequencing of Mycobacterium tuberculosis Directly from Clinical Samples Accurately Identifies Drug Resistance	Priti Kambli							
7.	IL-6, TIMP-2 and TGFβ-2 are associated with respiratory impairment during and following successful treatment of pulmonary tuberculosis	Akshay Gupte							
8.	Pharmacokinetics of Rifampicin, Isoniazid and Pyrazinamide during Daily and Intermittent Dosing	Deepa Shankar							
9.	Altered Circulating Levels of Eicosanoids in Tuberculosis-diabetes Co-morbidity and Reversal upon Standard Tuberculosis Treatment	Nathella Pavan Kumar							
10.	Association of Diabetes Mellitus with INH Monoresistance	Basavaradhya Shruthi							
11.	Respiratory and Non-respiratory Co-morbidities in TB Patients	Arundhati Chandini Arjun							
12.	Mental Health and TB: High Prevalence of Depression among Drugresistant TB Patients Not Associated with Cycloserine	Shri Vijay Bala Yogendra Shivakumar							
13.	Determination of Plasma Clofazimine Levels by Liquid Chromatography-Mass Spectrometry	Prerna K. Chawla							
14.	Determination of Serum Linezolid levels by HPLC	Prerna K. Chawla							
15.	Effect of Diabetes Prevalence on Circulating Components of Blood, Disease Severity and Drug Susceptibility in Patients with Pulmonary Tuberculosis	Abilasha N							
16.	Predictors of Mortality in a TB Meningitis Cohort	Arundhati Chandini Arjun							
17.	Role of PET CT Scans in Tuberculous Meningitis	Shona Arlin Christopher							

ABSTRACT I: Impact of Standard or Increased Moxifloxacin Dose Among MDR-Tb Patients in Mumbai with Low-level Resistance

Submitting Author: Jeffrey A Tornheim

Co-authors: Zarir F Udwadia, Sana Porwal, Girija Kishore, Ishita Gajjar, Megha Karane, Shri Vijay Bala Yogendra Shivakumar, Camilla Rodrigues, Amita Gupta

Background and Rationale: Tuberculosis causes more deaths worldwide than any other human infection and reported rates of resistance to both isoniazid and rifampin (multidrug resistant tuberculosis, "MDR-TB") are rising globally. The expansion of shorter, injectable-sparing MDR-TB regimens has reinforced the importance of fluoroquinolone treatment for MDR-TB. Some labs test moxifloxacin at multiple concentrations to identify low-level resistance that could be treated with higher moxifloxacin doses. To assess the impact of high-dose moxifloxacin treatment, we reviewed outcomes of MDR-TB patients with low-level moxifloxacin resistance.

Methods: Records were reviewed from an ongoing prospective observational cohort study of MDR-TB patients at a private referral hospital in Mumbai, India. Participants with isolates resistant to 0.5µg/mL moxifloxacin ("low-level") but susceptible to 2.0µg/mL ("high-level") were selected and analyzed according to treatment with moxifloxacin 400mg or 600mg daily. Final treatment outcomes (completed or cured vs. death, failure, or loss to follow-up), smear and culture conversion, weight gain, radiographic improvement, and treatment-associated side effects were analyzed by moxifloxacin dose. Regression and time-to-event models assessed the relative impact of moxifloxacin dose compared to clinical, microbiological, and radiographic factors and other concomitant treatments.

Results: Out of 55 I participants with MDR-TB, 158 had low-level resistance and high-level susceptibility. Of I 10 participants with final outcomes, 95 (86%) received moxifloxacin 600mg. No significant differences were found between demographic, clinical, or microbiological characteristics according to moxifloxacin dose. Regression models found that smear grade, x-ray score, cavitary lung disease, cumulative moxifloxacin dose, and lung resections were associated with treatment outcomes, but daily moxifloxacin dose was not. Multivariate and time-to-event analyses did not find moxifloxacin dose to be associated with any outcomes of interest.

Conclusions and Recommendations: In this large single-provider observational cohort in Mumbai's private sector, treatment of MDR-TB patients with low-level moxifloxacin resistance with higher doses of moxifloxacin was not associated with improved outcomes.

ABSTRACT 2: Host Lipidomic Profile Associated with Adverse Tuberculosis Treatment Outcomes

Submitting Author: Rupak Shivakoti

Co-authors: Padmapriyadarsini Chandrasekaran, Luke Elizabeth Hannah, Kannan Thiruvengadam, Natarjan Saravanan, Ramesh Karunaianatham, Amita Gupta, Vidya Mave, Nikhil Gupte, Vandana Kulkarni, Neeta Pradhan Akshay Gupte, Mandar Paradkar, Shri Vijay Bala Yogendra Shivakumar, Renu Bharadwaj, Anju Kagal, Sanjay Gaikwad, Shashi Sangle, Kamil Borkowski, John Newman, Oliver Fiehn, on behalf of CTRIUMPH RePORT India Study team

Background and Rationale: 'Omics' approaches have accelerated the identification of biomarkers for disease outcomes. With a major focus on transcriptomics, these approaches have also started to demonstrate utility in the field of Tuberculosis (TB). Given the significant roles host lipids play in inflammation and disease outcomes, we extended these investigations to assess the host lipidome in individuals with TB and their association with TB treatment outcomes.

Methods: A case-control study (N=289) of adverse TB treatment outcomes was nested within the CTRIUMPH cohort of individuals with active pulmonary TB. Cases (n=104) were defined as adverse TB treatment outcomes, a composite outcome of TB treatment failure (49%), TB recurrence (22%) and death (29%) while age- and gender-matched controls (n=185) were those without the outcomes. We studied the association of baseline (pre-treatment) host plasma lipid profile with development of adverse TB treatment outcomes. Complex lipids were semi-quantified using untargeted approach by liquid chromatography tandem mass spectrometry (LC-MS/MS). Targeted LC-MS/MS approach was used to quantify oxylipins, which include lipid mediators of inflammation, and endocannabinoids. Analysis of variance was used to assess mean difference between designated groups.

Results: Cases and controls were not significantly different based on study characteristics. Levels of twelve baseline lipids were significantly lower (p<0.05) in individuals with adverse TB treatment outcomes compared to controls. These included various 18-Carbon metabolites derived from linoleic acid and α -linolenic acid. In addition, baseline levels of linoleic acid, eicosapentaenoic acid, F2-isoprostanes, 5-hydroxyeicosatertaenoic acid (5-HETE) and 5 hydroxyeicosapenta-enoic acid (5-HEPE) were also lower in cases compared to controls.

Conclusions: We identified lipids that were significantly different between cases that developed adverse treatment outcomes compared to controls. These lipids could predict future adverse treatment outcomes and can serve as the basis for future research on their function in parallel with identification of potential therapeutics related to relevant biomarkers.

ABSTRACT 3: Linezolid Resistance in Mycobacterium Tuberculosis Isolates at a Tertiary Care Center in Mumbai, India, by Whole Genome Sequencing

Submitting Author: Remya Nambiar

Co-authors: Jeffrey A Tornheim, Margo Diricks, De Bruyne Katrien, Meeta Sadani, Anjali Shetty, Camilla Rodrigues

Background and Rationale: Linezolid (LZD) is a relatively new anti-tuberculosis (TB) drug, with robust activity against Mycobacterium tuberculosis (MTB). It is being used in TB treatment with increasing frequency. However, LZD resistance has already been reported, which is highly alarming, given its critical therapeutic role. This non-randomized, observational, non-interventional, experimental study aimed to phenotypically and genotypically assess LZD resistance in multidrug-resistant MTB isolates isolated at a tertiary center in Mumbai.

Methods: Laboratory records of all consecutive, culture-positive, pulmonary and extrapulmonary samples submitted to our tertiary center for TB diagnostics from June 2015 to June 2016 were reviewed to identify the number of samples assessed for LZD susceptibility by MGIT DST at a critical concentration of I mg/L and identify those that were resistant. Thirty-two consecutive LZD-resistant isolates identified during the same period, representative of the same pool and chosen by convenient sampling, were analyzed by whole genome sequencing (WGS) for LZD resistance.

Results: At our laboratory, the proportion of LZD-resistant isolates was 68 of the 2179 isolates (~3.1%) tested for LZD resistance by MGIT-based susceptibility testing. WGS of 32 representative LZD-resistant isolates identified the presence of the mutations C154R in the rplC gene and G2814T in the rrl gene as the major genomic resistance determinants.

Conclusions and Recommendations: We documented LZD resistance in ~3.1% isolates recovered in our clinical setting, with known mutations being identified as the determinants. LZD resistance poses an important risk to the success of newer treatment regimens, especially those designed for drug-resistant TB. As LZD-containing regimens increase in prominence, it will be important to support clinical decision-making

with a better understanding of the common mutations conferring LZD resistance, their frequency in different settings, and their associated phenotypic inhibitory concentrations.

ABSTRACT 4: Plasma Drug Concentrations of Isoniazid and Rifampicin in Pulmonary Tuberculosis Patients with Diabetes Mellitus

Submitting Author: Jedidiah Deva

Co-authors: Balamugesh Thangakunam, Binu S Mathew, Blessed Winston, DJ Christopher

Background and Rationale: Diabetes mellitus (DM) is a known risk factor for tuberculosis (TB). There is increased severity and poor treatment outcomes in patients with co-existent DM, and multiple factors may be responsible. This study is aimed to assess the influence of DM on the plasma concentrations of Isoniazid (H) and Rifampicin(R) in patients with TB.

Methods: This is a prospective observational study, with calculated sample size of 28 Pulmonary TB (PTB) patients in each of the groups: PTB patients with DM (PTB-DM) and PTB patients without DM (PTB-only) groups. Plasma concentrations of H and R were serially measured over 7 hours after drug ingestion. The maximum drug concentration (Cmax), Area under curve (AUC0-7) and time to reach Cmax (Tmax) were calculated and correlated with treatment outcomes at the end of intensive phase of therapy, which included symptomatic improvement, weight gain, radiological improvement and Sputum conversion rates.

Results: There was no significant difference in Cmax and drug exposure (AUC) of I and R in both the groups. Weight gain at the end of intensive phase was seen in I4(51.9%) of PTB-DM group and 23(82.1%) in PTB-only group which was statistically significant(p=0.017). Linear regression with both the groups combined showed that with one unit increase in baseline BMI, there was 0.28 unit decrease in Cmax of H (CI=-0.50 to-0.06, p=0.013) and 0.43 unit decrease in Cmax of R(CI= -5.55 to 1.49, p=0.037). There was a trend towards lower sputum conversion rates and poor symptomatic improvement in PTB-DM group, which did not achieve statistical significance.

Conclusion and Recommendations: There was no significant difference in pharmacokinetics of H and R between the groups. BMI in both the groups combined had an inverse relationship with maximum drug concentrations of H and R.PTB-DM group showed trend towards poor clinical response, despite adequate plasma concentration. Future studies may address higher ATT drug doses in Diabetics with a hope of improving clinical response.

ABSTRACT 5: Simultaneous Rapid Detection of Tubercular Meningitis and Drug Susceptibility Testing Using Pyrosequencing on Uncultured Cerebrospinal Fluid Samples

Submitting Author: Kanchan Ajbani

Co-authors: Mubin Kazi, Swapna Naik, Rajeev Soman, Anjali Shetty, Camilla Rodrigues

Background: Evaluating incident tuberculosis infection (TBI) in household contacts (HHC) of tuberculosis (TB) cases in high burden settings such as India is vital for TB biomarker and vaccine development.

Background and Rationale: Tubercular meningitis (TBM) is a serious form of tuberculosis (TB). Laboratory diagnosis is difficult as culture takes time and is often falsely negative in paucibacillary disease. In high-burden countries, circulating drug resistance confounds empiric treatment for TBM. Pyrosequencing

(PSQ) is a potential tool to detect and characterize TB as multidrug resistant (resistant to isoniazid and rifampin, "MDR") or extensively drug resistant (MDR plus fluoroquinolone and second-line injectable drug resistance, "XDR") directly from cerebrospinal fluid (CSF).

Methods: Sixty-seven consecutive CSF samples were included from patients who requested CSF pyrosequencing due to history, clinical findings, and routine CSF studies suggestive of TBM. CSF DNA was extracted using the Qiagen spin column protocol. PCR was performed for the rpoB, katG, inhA, gyrase A, eis, and rrs genes. PCR products were then pyrosequenced using the pyromark Q96. Results were compared to those obtained from CSF MGIT culture and drug susceptibility testing (DST) and CSF Xpert MTB/RIF.

Results: Of 67 CSF samples, 46 (68.7%) detected TB by PSQ. Of those, 13 were MDR-TB (28.3%), 2 were XDR-TB (4.3%), 3 were isoniazid monoresistant (6.5%), and the remaining 28 were susceptible to all XDR-defining drugs (60.9%). Of the 17 culture-positive samples 88% (15 of 17) concordance was observed between PSQ and phenotypic DST. In two samples PSQ failed to detect resistance to INH and RIF. Xpert MTB/RIF was positive in 21 of 67 (31.3%) samples that were also PSQ positive. Of those 21 samples, 8 were rifampin resistant (38.1%) and 13 were susceptible (61.9%). Patients were initiated on treatment based on PSQ reports.

Conclusions and Recommendations: In vital paucibacillary samples like CSF, PSQ can improve timely detection of TB and provide drug resistance information to guide early initiation of appropriate therapy while awaiting phenotypic DST.

ABSTRACT 6: Whole Genome Sequencing of Mycobacterium Tuberculosis Directly from Clinical Samples Accurately Identifies Drug Resistance

Submitting Author: Priti Kambli

Co-authors: Jeffrey A Tornheim, Lakshmi Soundararajan, Sushri Priyadarshini, Ravi Gupta, V.L. Ramprasad, Amita Gupta, Camilla Rodrigues

Background and Rationale: Culture-based identification of Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis and standard drug susceptibility testing (DST) are cumbersome processes that require several weeks for results. This delays diagnosis, effective treatment, and may worsen outcomes. Whole genome sequencing (WGS) is a promising tool for simultaneous identification of Mtb and DST, but culture-free WGS has not yet demonstrated consistent results at high depth.

Methods: We present a custom Mtb-specific enrichment assay for WGS from uncultured sputum samples. We sequenced 46 samples to identify Mtb and resistance-associated mutations. Mutations identified by WGS were compared to results obtained from both LPA and phenotypic DST performed on the same samples.

Results: This enrichment method significantly improved recovery of Mtb DNA, with proportion of reads mapping to Mtb increasing from 3% from unenriched samples to 65.5% from enriched samples. Our method increased median Mtb genome coverage from 49.1% obtained using unenriched samples to ~100% among the enriched samples. Using MPT64 gene coverage for species identification, we detected Mtb with 100% accuracy. Among Mtb samples, 97% of the genome achieved a depth of ≥100x. Assessment of resistance-associated mutations found 96.8% sensitivity, 98.5% and 98.3% accuracy compared to LPA. Average MICs and ranges were identified for mutations associated with resistance to XDR-TB drugs for these isolates.

Conclusions and Recommendations: This novel custom tiling probe allows successful WGS of Mtb at high depth and with high accuracy of DST results compared LPA, and phenotypic DST. Sequencing whole genome accurately will help in exploring regions that are not yet known for drug resistance and will enable discovery of new drug resistance mutations.

ABSTRACT 7: IL-6, TIMP-2 and TGFβ-2 are Associated with respiratory Impairment During and Following Successful Treatment of Pulmonary Tuberculosis

Submitting Author: Akshay Gupte

Co-authors: Mandar Paradkar, Sriram Selvaraju, Pavan Kumar, Rahul Lokhande, Vandana Kulkarni, Luke Hanna, Kannan Thiruvengadam, Krithikaa Sekar, Ayesha Momin, Sri Vijay Bala Yogendra, Nikhil Gupte, Subash Babu, Sundeep Salvi, Jonathan Golub, William Checkley, Robert Bollinger, Bruno Andrade, Vidya Mave, Padmapriyadarsini Chandrasekaran, Amita Gupta

Background and Rationale:

Pulmonary tuberculosis (PTB) is increasingly being recognized as an independent risk factor for chronic lung diseases. However, inflammatory pathways associated with respiratory impairment in PTB are unclear; preventing the identification of prognostic and therapeutic targets for risk-stratification and host-directed therapies to limit lung injury.

Methods: New adult (>18 years) drug-sensitive PTB cases were enrolled within I week of treatment initiation and, prospectively evaluated at 2 months and 6 months for plasma concentrations of cytokines associated with the host immune response in PTB (INF- γ , TNF- α , IL-1 β , IL-4, IL-6, IL-10, CXCL-10, IL-12, IL-13, IL-17), matrix destruction (MMP-1, MMP-3, MMP-7, TIMP-1, TIMP-2, TIMP-3, TIMP-4) and fibrosis (TGF β -1, TGF β -2, TGF β -3). Respiratory impairment was assessed from the patient's perspective by the Saint George's Respiratory Questionnaire (SGRQ) administered during treatment, and objectively by post-bronchodilator spirometry conducted during a 6-monthinterval following successful treatment completion. P-values were adjusted for multiple comparisons using the Benjamini-Hochberg procedure and considered significant at α<0.05.

Results: Of the 30 participants enrolled, 20 (74%) were male, 9 (31%) ever-smoked, 2 (7%) had HIV coinfection and 7 (26%) had diabetes. The median (IQR) age and body mass index (BMI) was 36 (28-50) years and 18.1 (16.0-20.0) kg/m2, respectively. Higher levels of IL-6were associated with higher SGRQ scores during treatment (5-points per log-higher IL-6, 95%CI 2 to 8, p<0.001). A greater decline in TIMP-2 levels during the first 2 months of treatment was associated with higher percent-predicted FEV1 (r=0.70, p=0.005) and FVC (r=0.67, p=0.008), while a greater decline in TGFβ-2 during the first 2 months of treatment was associated with higher percent-predicted FEV1 (r=0.55, p=0.03) and FEV1/FVC ratio (r=0.58, p=0.03) following successful treatment.

Conclusion: Lower levels of IL-6 and greater resolution of TIMP-2 and TGF β -2 during early treatment was associated with better respiratory health status and lung function in successfully treated PTB.

ABSTRACT 8: Pharmacokinetics of Rifampicin, Isoniazid and Pyrazinamide during Daily and Intermittent Dosing

Submitting Author: Deepa Shankar

Co-authors: DJ Christopher, AK Hemanth Kumar, Balamugesh Thangakunam, T Kannan, Geetha Ramachandran

Background: Tuberculosis (TB) is a readily curable disease when adequate anti-TB treatment (ATT) is properly administered. Despite of standard RNTCP short course regimen, treatment failure, relapse and drug

resistant remain unexplained. Sub-therapeutic drug concentration as risk factors for unfavourable outcome has been reported. Recently, there was a transition in tuberculosis (TB) treatment from thrice-weekly to daily regimens in India. The aim of the study is to compare the pharmacokinetics (PK) of rifampicin (RMP), isoniazid (INH) and pyrazinamide (PZA) between TB patients undergoing daily and thrice-weekly ATT.

Methods: This prospective observational PK study was undertaken in 49 newly diagnosed adult patients with pulmonary/extra-pulmonary TB receiving either daily ATT (n = 22) or thrice-weekly ATT(n = 27). Patients fulfilling the criteria of HIV-Seronegative, ATT for minimum of 2 weeks and HBA1c less than 7% were included in the study. The anti-TB drugs were administered under fasting conditions and drug administration was observed by an investigator. Blood samples were obtained before (0) and at 2, 4, 6 & 8 hours after drug ingestion. Plasma RMP, INH and PZA were estimated by HPLC.

Results: Peak concentration (Cmax) of RMP was significantly higher (RMP: $8.5\mu g/mlvs 5.5\mu g/ml$; p = 0.003) and Cmax of INH was significantly lower (INH: $4.8\mu g/ml vs 10.9\mu g/ml$; p < 0.001) during daily than thrice-weekly ATT. Cmax of drugs and doses were significantly correlated. A higher proportion of patients had subtherapeutic RMP Cmax ($8.0\mu g/ml$) during thrice-weekly than daily ATT (78% vs 36%; p = 0.004). Multiple linear regression analysis showed that RMP Cmax was significantly influenced by dosing rhythm and pulmonary TB, and Cmax of INH and PZA by mg/kg doses.

Conclusions: During daily ATT, drug doses used produced adequate RMP concentrations, but INH doses may have to be increased. More studies are required using higher INH doses with monitoring for occurrence of adverse drug reactions.

ABSTRACT 9: Altered Circulating Levels of Eicosanoids in Tuberculosis-diabetes Comorbidity and Reversal upon Standard Tuberculosis Treatment

Submitting Author: Nathella Pavan Kumar

Co-authors: Kadar Moideen, Vijay Viswanathan, Basavaradhya S Shruthi, Shanmugam Sivakumar, Mohan Natarajan, Hardy Kornfeld, Subash Babu

Background and Rationale: Host eicosanoids are lipid mediators of inflammation that are increasingly recognized as important modulators of the host immune response in Mycobacterium tuberculosis infection (TB). Published studies have reported that leukotriene B4 (LTB4) and prostaglandin E2 (PGE2) play a host protective role by mediating bacterial clearance, while lipoxin A4 (LXA4) and I5-epi-lipoxin A4 (I5-epi-LXA4) play a pathogenic role by hampering the host inflammatory response in TB. However, a detailed examination of the association of eicosanoids in tuberculosis-diabetes comorbidity (TB-DM) and relationship to disease pathology or bacterial burdens has not been studied.

Methods: To study this, we examined the systemic levels of LTB4, PGE2, LXA4 and 15-epi-LXA4 in individuals with either TB-DM, TB, diabetes mellitus (DM) or healthy controls (HC).

Results: Circulating levels of LXA4, 15-epi-LXA4 and PGE2 were significantly increased while the levels of LTB4 were significantly decreased in TB-DM and TB group compared to DM and HC. Moreover, the levels of LXA4 and 15-epi-LXA4 were significantly higher in TB-DM individuals with bilateral and cavitary disease and these markers also exhibited a significant positive relationship with bacterial burden. Thus, both disease severity and bacterial burden in TB-DM is associated with elevated systemic levels of circulating eicosanoids. In addition, LXA4, 15-epi-LXA4 and PGE2exhibited a positive correlation with HbA1c, whereas LTB4 exhibited a negative correlation with HbA1c indicating an association of these factors with poor diabetic control. Finally, the end of anti-tuberculosis therapy resulted in significantly diminished levels of LXA4, 15-epi-LXA4 and PGE2 in TB-DM and TB group and enhanced levels of LTB4 in only the TB group compared to pre-treatment.

Conclusions and Recommendations: Our data on eicosanoids suggest that modulation and upregulation of eicosanoids are typical characteristics of TB-DM co-morbidity. Finally, our study highlights the complex network interlinking the pathogenesis of TB-DM in terms of host physiological interference.

ABSTRACT 10: Association of Diabetes Mellitus with INH Monoresistance

Submitting Author: Basavaradhya Shruthi

Co-authors: Shanmugam Sivakumar, Arutselvi, Nathella Pavan Kumar, Subash Babu, Pradeep A. Menon, Mohan Natarajan, Sathyavani K, Hardy Kornfeld, Vijay Viswanathan

Background: Tuberculosis (TB) remains a public health problem worldwide and diabetes mellitus (DM) is considered as one of the major risk factors for both drug susceptible and drug resistant TB. Drug-resistant TB has high rates of morbidity and mortality globally and presents a formidable obstacle to TB elimination. Isoniazid (INH) and rifampicin are the most important drugs for treating drug-susceptible TB. Isoniazid monoresistance (IMR) is the most common form of mono-resistance; its world prevalence is estimated to range between 0.0 to 9.5% globally. Although several studies have determined IMR is not associated with poor outcomes, others have found associations with higher rates of treatment failure and progression to multidrug-resistant TB. Concurrent DM and TB is associated with adverse outcomes including delayed time to sputum conversion, treatment failure, and TB recurrence after curative treatment completion.

Aim of the Study: To determine the association of DM with INH mono resistance and its association with adverse outcomes in subjects with TB DM.

Methodology: 282 newly diagnosed pulmonary TB participants from the EDOTS cohort were included in the study. Drug sensitivity testing was applied to baseline sputum culture isolates. All the participants were evaluated for glycaemic status by oral glucose tolerance test and measurement of haemoglobin A1c. They were grouped as TB with DM (TB/DM) and TB without DM (TB/non-DM). Prevalence of IMR in both the groups was compared using Chi Square test and risk ratio.

Results and Conclusion: Amongst 282 subjects, 177 were TB/DM and 105 were TB/non-DM. a total of 86 participants (30.5%) showed resistance to at least one anti-TB drug, out of which isoniazid mono-resistance was the highest [32 out of 86 (37.2%)], followed by streptomycin 30(34.8%), ethambutol 18(20.9%), and rifampicin 6(6.9%). There was a non-significant trend (risk ratio 1.1) for higher IMR in the TB/DM group 22(12.42%) compared with TB/non-DM 10(9.5%). Amongst 32 IMR subjects, 20 (62.5%) subjects showed adverse treatment outcome (failure or relapse or death). Our findings are in accordance with results reported by Saldana et al. 2from a cohort in Southern Mexico but differ from those reported by Baghaei et al. 3 who found significantly increased odds of mono-resistance to at least one first-line drug in TB/DM. There are many potential explanation for these differences including regional host and microbe genetics and differing coprevalence of host factors that increase TB disease and/or transmission risk. Further studies with larger number of subjects are necessary to clarify the reasons of primary resistance in TB patients with and without DM. Considering the increased unfavourable outcomes in IMR subjects, the present study suggests a need for intensified, tailored TB treatment in order to achieve favourable outcomes in TB patients with DM and IMR

ABSTRACT 11: Respiratory and Non-respiratory Co-morbidities in TB Patients

Submitting Author: Arundhati Chandini Arjun

Co-authors: DJ Christopher, Balamugesh Thangakunam, Deepa Shankar

Background and Rationale: Tuberculosis is a debilitating disease with devastating consequences unless detected and treated early. Co-morbidities such as DM, HIV, and malnutrition are well established risk factors for the reactivation of TB. However TB patients could have several respiratory and non-respiratory co-morbidities, some of which may contribute to reactivation and have a bearing on the morbidity, course of disease and mortality. These have not been well studied in published literature. The aim of the study was to assess the prevalence of respiratory and non-respiratory co-morbidities in consecutive TB patients who presented to the Christian Medical College, Vellore a tertiary care teaching hospital.

Methods: This was a retrospective study of newly diagnosed cases of pulmonary and extra-pulmonary tuberculosis presenting to the Department of Pulmonary Medicine from lanuary to lune 2018. The subjects were identified from the departmental TB database. They were included if they had disease either microbiologically confirmed by smear microscopy, Gene Xpert, culture, or by histopathology with consistent clinical picture. A detailed evaluation of the hospital records was carried out to identify respiratory comorbidities such as ILD, sarcoidosis, COPD, bronchial asthma, lung malignancy, and bronchiectasis. Non-respiratory co-morbidities included haematological, oncological, cardiovascular (ischemic heart disease, cerebrovascular accident, hypertension etc.), endocrinological, rheumatologic and autoimmune disorders, HIV and diabetes mellitus.

Results: We diagnosed and treated 229 patients with tuberculosis during the study period-179 pulmonary (PT) and 50 extra-pulmonary (EPTB). Out of 229, 173(75.5%) patients had at least one co-morbidity. Eightyone (35.3%) had 1, 60(26.2%) had 2 and 32(14%) had 3 or more co-morbidities. The most common co-morbidities were Anemia in 39.7%, Diabetes in 34.49%, Hypertension in 13.1%, Asthma in5.6%and COPD in 4.8% and HIV in 4(1.75%) patients. Low BMI (<18.5%) was present in 42.1%, however it was not recorded in all the patients. Among the 179 PT patients, 16.75% had respiratory co-morbidities and 68.71% had non-respiratory co-morbidities.

Conclusion: Three quarters of the TB patients had co-morbidities, the commonest being Low BMI, Diabetes and Anemia. HIV prevalence was low. Among PT subjects, respiratory co-morbidities were found in 16.75%. The study makes a case for careful screening for co-morbidities in TB patients.

ABSTRACT 12: Mental Health and TB: High Prevalence of Depression among Drugresistant TB Patients Not Associated with Cycloserine

Submitting Author: Shri Vijay Bala Yogendra Shivakumar

Co-authors: Jeffrey Tornheim, Ishita Gajjar, Sana Porwal, Girija Kishore, Megha Karane, Samrin Sayed, Prerna Chawla, Camilla Rodrigues, Tester Ashavaid, Amita Gupta, Zarir F. Udwadia

Background and Rationale: Depression often coexists with TB, and is often associated with poor treatment adherence and higher mortality. Drug-resistant TB(DR-TB) patients often receive cycloserine, a bacteriostatic drug with partial NMDA-receptor activity that is associated with neuropsychiatric side effects. We evaluated Patient Health Questionnaire-9 (PHQ-9)scores among DR-TB patients undergoing treatment with and without cycloserine.

Methods: Participants in an ongoing prospective cohort of newly-diagnosed DR-TB patients(≥15yearsof age)at a private referral hospital in Mumbai completed PHQ-9questionnaire at enrolment and after 2weeks, 1, 2, 3, 4, 5, and 6 months of treatment. PHQ-9 scores between 1-4, 5-9, 10-14, 15-19 & ≥20 were defined as minimal, mild, moderate, moderate-severe and severe depression.

Results: Of 55 DR-TB patients, 67% were female, 93% culture-confirmed, 9% diabetic, and I HIV-infected. Of 52 patients with PHQ-9 scores, 10% (5/52) were severely, 21% (11/52) moderately, 29% (15/52) mildly and 38% (20/52) minimally depressed at baseline with scores ≥10 reported by 60% (31/52)of patients during treatment. Of 55 DR-TB patients, 44 received cycloserine. Mean PHQ-9 scores were similar among patients treated with and without cycloserine at entry (7.4 vs. 7.1), week 2 (5.3 vs. 5.4), month 1 (8.0 vs. 7.3), month 2 (7.1 vs. 7.0), month 3 (7.6 vs. 8.6), month 4 (6.9 vs. 8.1), month 5 (9.8 vs. 6.6) and month 6 (8.1 vs. 7.9). No significant difference was found between groups at any time point.

Conclusions and Recommendations: Depression as measured by PHQ-9 scores is very common during DR-TB treatment. The depression experienced during MDR-TB treatment was not significantly impacted by concomitant cycloserine treatment. More attention should be paid to the mental health of DR-TB patients during treatment. Active screening and development of blood based biomarkers to assess mental health could help triage high risk patients for early intervention.

ABSTRACT 13: Determination of Plasma Clofazimine Levels by Liquid Chromatography-Mass Spectrometry

Submitting Author: Prerna K. Chawla

Co-authors: Rohan V. Lokhande, Prasad R. Naik, Alpa J. Dherai, Zarir F. Udwadia, Ashok A. Mahashur, Lancelot Pinto, Rajeev Soman, Camilla Rodrigues, Amita Gupta, Jeffrey A Tornheim, Neil Martinson, Ebrahim Variava, Lubbe Wiesner, Anton Joubert, Tester F. Ashavaid

Background and Rationale: Clofazimine (CFZ) is used as a second line drug for multidrug resistant tuberculosis (MDR-TB) treatment. It exerts slow bactericidal effect on mycobacteria by binding to DNA, leading to cell cycle disruption. Efficient in vitro and in vivo activity against drug resistant strains and low rates of CFZ resistance has promoted its use in MDR-TB therapy. CFZ is well-absorbed orally with food but has a very long half-life and its pharmacokinetics are not well understood, especially among MDR-TB patients. Therefore, the present study aimed to establish and validate an assay to quantitate CFZ levels in the plasma of MDR-TB patients.

Methods: CFZ quantitation was standardized and validated with a tandem mass spectrometry approach using liquid chromatography mass spectrometry (LC-MS). LC-MS grade solvents were used along with pure CFZ powder and an internal standard (IS). Chromatography was carried out using the reverse phase column with an isocratic elution technique. Plasma samples were deproteinized with organic solvents and analysed on LC-MS from a calibration range of 0.0313-4mg/L.

Results: The method was validated for linearity, accuracy, precision, recovery, and limit of quantitation. The stability analyses are on-going. A consistent ratio of area count of CFZ/area count of IS was observed with recovery ranging from 80-120%. Inter-day and intra-day accuracy and precision passed the %coefficient of variance (CV)of<20% for standards and controls. Therapeutic range of plasma CFZ is 0.5–2mg/l. CFZ levels have been quantitated for 32 samples (2-hr post dose) so far, and the remaining collected samples are under process. The drug levels observed will be correlated with factors affecting plasma drug levels.

Conclusion and Recommendations: The method is validated as per the Bioanalytical Guidelines for method validation, FDA 2018. The developed method is a simple and robust method to estimate plasma Clofazimine levels.

ABSTRACT 14: Determination of Serum Linezolid levels by HPLC

Submitting Author: Prerna K. Chawla

Co-authors: Prasad R. Naik, Rohan V. Lokhande, Alpa I. Dherai I, Zarir F. Udwadia, Ashok A. Mahashur, Lancelot Pinto, Rajeev Soman, Camilla Rodrigues, Amita Gupta, Jeffrey A. Tornheim, Tester F. Ashavaid

Background and Rationale: Linezolid is widely used as a second line drug for anti-tuberculosis treatment. It binds to the ribosomal subunit, inhibiting formation of the initiation complex and preventing translation and protein synthesis. Linezolid is well absorbed orally but its pharmacokinetics is known to exhibit wide inter individual variability warranting the need for therapeutic drug monitoring. The present study aimed to develop a validated assay to quantitate serum linezolid levels for patients on ongoing linezolid therapy.

Methods: A high performance liquid chromatographic (HPLC) method with UV detection for quantitative estimation of linezolid in serum was developed. Chromatography was carried out using reverse phase technique with a mobile phase composed of phosphate buffer and acetonitrile. Serum samples were deproteinized with organic solvents and analyzed on HPLC. The assay is calibrated from 2-100mg/L calibration range with a lower limit of detection of Img/L.

Results: The method has been validated for linearity, recovery, accuracy, precision, robustness, limit of detection and limit of quantitation. The retention time of linezolid was found to be 8.01min. The recovery of linezolid was close to 100% and ranged from 80% to 120% as per guidelines. Inter-day and intra-day accuracy and precision passed the % coefficient of variance (CV) of < 20%. Therapeutic range of serum linezolid levels is 12 –26 mg/l. Drug level estimation in patients on ongoing linezolid therapy is initiated with about 10 samples processed so far. The remaining collected samples will be processed and correlated with factors affecting serum drug levels. Conclusion and Recommendations: The method is validated as per the Bioanalytical Guidelines for method validation, FDA 2018. The developed method is a simple & robust method to estimate linezolid levels in plasma samples.

ABSTRACT 15: Effect of Diabetes Prevalence on Circulating Components of Blood, Disease Severity and Drug Susceptibility in Patients with Pulmonary Tuberculosis

Submitting Author: Abilasha N

Co-authors: Bharath B, Jasemine Priyanga R, Senbagavalli P, Roy G, Sarkar S, Subitha L, Muthuraj M, Vinod K, Noyal J, Hochberg NS

Background: Diabetes mellitus (DM) is a known co-morbid condition for tuberculosis (TB) and also a major risk factor in the development of active TB.

Aim: To study peripheral blood components, disease severity and susceptibility to anti-TB drugs in active pulmonary TB patients with and without the co-existence of DM.

Methodology: The data is obtained from RePORT India cohort, IIPMER CRU. The study population comprises of 21 healthy community controls (HCC) and 184 active pulmonary TB patients, of which 99 (58%) were TB+DM+ and 72 (42%) had only TB+. Patients with TB were further sub-grouped as 1+, 2+ and 3+ based on sputum smear results. Complete blood count (CBC), chest X-ray (% of lung affected and cavitation) and MGIT drug susceptibility (DST) were the parameters analysed.

Results: Whole blood parameters including WBC, Haemoglobin, Platelets, Neutrophils, Neutrophil Lymphocyte ratio, Eosinophil Lymphocyte Ratio (ELR) and Platelet Lymphocyte ratio were significantly higher

(p<0.05) in TB+ and TB+DM+ groups compared to HCC. Hb and HCT were the only parameters significantly different (P<0.01) between TB+ and TB+DM+ groups. Interestingly, eosinophils and ELR were showing significant inverse trend when compared between males and females with TB severity. The percentage of 2+ TB severity was significantly higher in TB+DM+ group (41.41%) in comparison to TB alone group (30.99)and the effect on lung damage was also analysed. DST results showed 3% of TB+DM+ patients being resistant to INH and Ethambutol, whereas5% and 2.5% of TB alone group were resistant to INH and ethambutol respectively.

Conclusion: DM seem to have varied effects on cellular levels, disease severity and drug susceptibility and it warrants detailed studies to explore the underlying mechanisms which might help to improve TB control in TB-diabetic co-prevalent countries.

ABSTRACT 16: Predictors of Mortality in a TB Meningitis Cohort

Submitting Author: Arundhati Chandini Arjun

Co-authors: Balamugesh Thangakunam, Thambu David, Soumya Satheyendra, Ramya I, OC Abraham, Alice Mathuram, DJ Christopher

Background and Rationale: TB Meningitis is a frightening disease with high mortality rates. DBT and NIAID (USA) through CRDF global have jointly funded an observational cohort of TBM and pulmonary TB patients to study the genetic variants of determinants of immune response in Indian patients with TBM and PTB, and its effects on TB severity and outcomes. We aimed to compare the baseline & disease severity characteristics of this cohort of patients who successfully completed anti-tuberculous treatment against those who succumbed to the disease.

Methods: All patients who underwent hospitalization & treatment for TB Meningitis in CMC, Vellore were recruited from September 2014 to August 2018. After obtaining consent, patients underwent detailed screening of symptoms, examination and standardised anti-TB treatment (ATT) for 12-18 months, along with corticosteroids for 8 weeks, with extension based on response. We extracted from the CRF the baseline demographics such as age and gender; BMI, Diabetic &HIV status and disease severity indices such as Glasgow Coma Scale, Karnofsky and MRC grading; and compared those who succumbed with those who completed treatment. Patients who needed prolonged ATT (beyond 18 months) or steroid regimen (beyond 9 weeks) deemed to have received extended treatment and they were compared with those who received treatment of the standard duration.

Results: A total of 239 patients were recruited during the study duration. Of these 77(32.21%) successfully completed treatment, 49(20.5%) succumbed to the disease and treatment is ongoing for 39(16.32%) patients. Those that successfully completed treatment and those that succumbed were included and the comparison was done between these groups. Those who succumbed were significantly older (51.4 VS years, p <0.001), of male gender (p= 0.008), had a higher BMI (p =0.028), were more likely to be in MRC grade 2 or 3 (p<0.001), to be diabetic (p= 0.001). Of the patients who completed treatment successfully, the patients who required a prolonged course of steroids had a lower GCS (p= 0.047) compared to those who received treatment of standard duration.

Conclusion: TB Meningitis is a gruesome disease with a fatal outcome in 20.5% of the patients. Older patients, male sex, higher BMI, diabetes and those with MRC grades 2 & 3 were found to be predictors or mortality and those with lower GCS scale were more likely to have extension of ATT.

ABSTRACT 17: Role of PET CT Scans in Tuberculous Meningitis

Submitting Author: Shona Arlin Christopher

Co-authors: DJ Christopher, Balamugesh Thangakunam, Julie Hephzibah, Alice Mathuram, Thambu David, Soumya Satheyendra, OC Abraham, Ramya I, Deepa Shankar

Background: Tuberculous meningitis (TBM) is the most severe form of TB and has the highest mortality and morbidity rate compared to other forms of TB. TBM accounts for about 1% of all cases of tuberculosis (TB) and 5% of EPTB in immuno-competent individuals. The case fatality ratio remains relatively high (15-40%) despite effective treatment. Early diagnosis is challenging due to the non-specific symptoms of TBM and the low number of tubercle bacilli in cerebrospinal fluid (CSF). Until now, there is no established diagnostic method that can rapidly detect M. tuberculosis. So the diagnosis is often on the basis of prediction scores and consensus criteria. The aim of this study is to assess the role of 18F-FDG PET-CT in detecting the extra cranial involvement in patients with TBM. This improves the probability of TBM, thus improves confidence in diagnosis and also may reveal more accessible sites to obtain samples for confirming diagnosis and drug susceptibility patterns with appropriate microbiologic & pathology tests.

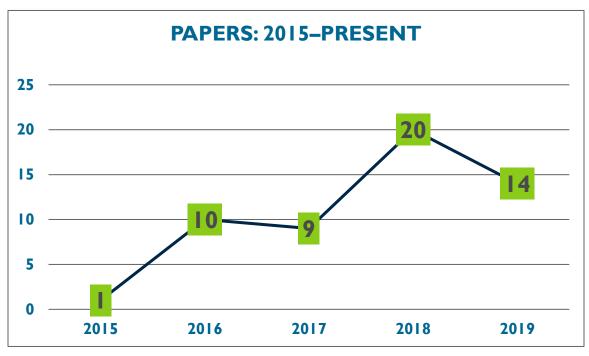
Methods: This is a prospective sub-study of a RePORT-Parent protocol TBM cohort. Patients presenting with TBM symptoms were included from all Medicine Units (1 to 5) of Christian Medical College, Vellore. Out of 32patients who consented for whole body 18F-FDG PET-CT, 22 were eligible and underwent PET CT scan successfully. Extra-cranial FDG uptake was positive in 16(73%) and negative in 6(27%) patients. Of the positive PET scans, 14 FDG avid lesions were picked up related to TB (64%)-in lymph nodes, lungs, bones, spine, pleura and blood vessel (Aorta). There were 2 non-significant avid lesions not related to TB (1-Thyroid nodule, 1-Bone marrow secondary to steroid treatment)

Results: TBM patients were classified as Definite, Probable and Possible as per Consensus Criteria. When PET CT positive results were included for scoring, in 3 patients, TBM classification changed from possible to probable. Out of 14 positive PET CT scan, pleural biopsy was performed in 1 patient, which was Xpert positive and the diagnosis changed from possible to probable TBM in this patient.

Conclusion: 18F-FDG PET-CT is a promising modality in the evaluation of suspected TBM and has an important role in detecting extra cranial involvement, thus improving diagnostic probability and provides an opportunity for obtaining for specific diagnosis.

This page is intentionally blank

Publications PARENT & COMMON PROTOCOLS


RePORT India

 8^{TH} ANNUAL JOINT LEADERSHIP MEETING

BIOMARKERS & BEYOND

CHENNAI | 4-6 FEB 2019

This page is intentionally blank

*Figure for 2019 reflects manuscripts that have been published and are in process as of January 23, 2019.

RePORT India Consortium

RePORT International: Advancing Tuberculosis Biomarker Research through Global Collaboration

Hamilton CD, Swaminathan S, Christopher DJ, Ellner J, Gupta A, Sterling TR, Rolla V, Srinivasan S, Karyana M, Siddiqui S, Stoszek SK, Kim P. Clinical Infectious Diseases (CID).2015 October 15; 61(Suppl 3): S155–S159.

PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26409277

Collaborating Organizations:

- Scientific Affairs, Global Health, Population and Nutrition, FHI 360
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
- Indian Council of Medical Research and Department of Health Research, Government of India
- Pulmonary Medicine, Christian Medical College, Vellore, India
- School of Medicine, Boston University, MA, USA
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University School of Medicine, Nashville, TN, USA
- National Institute of Infectious Diseases Evandro Chagas-Fiocruz, Rio de Janeiro, Brazil
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health
- The National Institute of Research and Development, Indonesia Ministry of Health, Jakarta, Indonesia
- Collaborative Clinical Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health
- Health Studies Sector, Westat, Rockville, MD, USA

Bhagwan Mahavir Medical Research Centre/University of Texas Health Science Center at Tyler (CRU 107)

1. Young household contacts of tuberculosis (TB) patients with reduced T4 and IL-1 α production are at a highest risk for developing active TB disease

Devalraju KP, Tripathi D, Neela VSK, Paidipally P, Bogam AK, Mallidi V, Sykam A, Singh KP, Ansari MS, Vankayalapati R, Valluri VL. (Journal of Clinical Investigation; under review)

2. Defective MyD88 and IRAK4 but not TLR-2 expression in HIV+ individuals with latent tuberculosis infection

Devalraju KP, Neela VSK, Gaddam R, Chaudhury A, Van A, Krovvidi SS, Vankaylapati R, Valluri VL. Cytokine. 2018:110: 213-221.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29778672

3. IL-17 and IL-22 production in HIV+ individuals with latent and active tuberculosis

Devalraju KP, Neela VSK, Ramaseri SS, Van A, Chaudhury A, Krovvidi SS, Vankayalapati R, Valluri VL. BMC Infectious Diseases. 2018;18:321.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29996789

4. Alcohol enhances type I interferon-αproduction and mortality of young mice infected with Mycobacterium tuberculosis

Tripathi D, Welch E, Cheekatla SS, Radhakrishnan R, Venkatasubramanian S, Paidipally P, Van A, Samten B, Devalraju P, Neela V, Valluri V, Mason C, Nelson S and Vankayalapati R. PLoS Pathog. 2018;14(8): e1007174.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30071107

5. IL-21 regulates NK cell responses during Mycobacterium tuberculosis infection

Paidipally P, Tripathi D, Van A, Radhakrishnan R, Dhiman R, Venkatasubramanian S, Devalraju K, Tvinnereim A, Valluri V, Vankayalapati R. J Infect Dis. 2018 Mar 28;217(8):1323-1333.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29390153

6. A TLR9 agonist promotes IL-22-dependent pancreatic islet allograft survival in type I diabetic mice

Tripathi D, Venkatasubramanian S, Cheekatla SS, Paidipally P, Welch E, Tvinnereim AR, Vankayalapati R. Nat Commun. 2016 Dec 16:7:13896. doi: 10.1038/ncomms13896.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27982034

Collaborating Organizations:

 Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, USA

7. IL-21-dependent expansion of memory-like NK cells enhances protective immune responses against Mycobacterium tuberculosis

Venkatasubramanian S, Cheekatla S, Paidipally P, Tripathi D, Welch E, Tvinnereim AR, Nurieva R, Vankayalapati R. Mucosal Immunol. 2016 Dec 7. doi: 10.1038/mi.2016.105

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462891/

Collaborating Organizations:

- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- Department of Immunology, M. D. Anderson Cancer Center, Houston, Texas, USA

8. NK-CD11c+ cell crosstalk in diabetes enhances IL-6-mediated inflammation during Mycobacterium tuberculosis infection

Cheekatla SS, Tripathi D, Venkatasubramanian S, Nathella PK, Paidipally P, Ishibashi M, Welch E, Tvinnereim AR, Ikebe M, Valluri VL, Babu S, Kornfeld H, Vankayalapati R PLoS Pathog. 2016 Oct 26;12(10):e1005972. doi: 10.1371/journal.ppat.1005972. eCollection 2016.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27783671

Collaborating Organizations:

- Department of Pulmonary Immunology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- National Institutes of Health, International Center for Excellence in Research, Chennai, India
- Department of Cellular and Molecular Biology, Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, Texas, USA
- Blue Peter Research Center, LEPRA Society, Cherlapally, Hyderabad, India,
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA

Byramjee Jeejeebhoy Medical College (BJGMC)/ National Institute for Research in Tuberculosis (NIRT)/ Johns Hopkins University (JHU) (CRU 106 & 105)

1. Smoking, alcohol use disorder and TB treatment outcomes: A dual co-mobidity burden that cannot be ignored

Thomas B, Thiruvengadam K, Rani S, Ovung S, Sivakumar S, Shivakumar SVBY, Paradkar M, Gupte N, Suryavanshi N, Akshay GN, Kohli R, Pradhan N, Sivaramakrishnan GN, Gaikwad S, Kagal A, Dhanasekaran K, Deluca A, Golub JE, Mave V, Chandrasekaran P, Gupta A for the CTRIUMPH- RePORT India Study. (Submitted: PLOS ONE; January 2018)

2. Age-specific burden of tuberculosis infection in household contacts in an endemic setting: Time for prophylaxis?

Dolla CK, Chandrasekaran P, Thiruvengadam K, Lokhande R, Kinikar A, Paradkar M, Gupte A, Gaikwad S, Pradhan N, Kulkarni V, Shivakumar SVBY, Suryavanshi N, Gupte N, Pattabiraman S, Kagal A, Shrinivas BM, Murali L, Bharath TK, Pirthivi M, Kumaran P, Mave V, Gupta A. (Submitted: International Journal of Tuberculosis and Lung Disease; January 2018)

3. Sub-therapeutic rifampicin concentration is associated with unfavourable tuberculosis treatment outcomes

Ramachandran G, Chandrasekaran P, Gaikwad S, Kumar AKH, Thiruvengadam K, Gupte N, Paradkar M, Dhanasekaran K, Sivaramakrishnan GN, Kagal A, Thomas B, Pradhan N, Kadam D, Hanna LE, Balasubramanian U, Kulkarni V, Murali L, Golub J, Gupte A, Shivakumar SVBY, Swaminathan S, Dooley KE, Gupta A, Mave V for C-TRIUMPh team. (Submitted: Clinical Infectious Diseases; January 2019)

- 4. Infection free "resisters" among household contacts of adult pulmonary tuberculosis
 Mave V; Chandrasekaran P; Chavan A; Shivakumar SVBY; Danasekaran K; Paradkar M; Thiruvengadam K, Kinikar A;
 Murali L; Gaikwad S; Hannah LE; Kulkarni V; Pattabiraman S; Suryavanshi N; Thomas B; Kohli R; Sivaramakrishnan GN;
 Pradhan N; Banu B; Kagal A; Golub J; Gupte A; Gupte N; Swaminathan S; Gupta A. (Submitted: PLOS ONE; December 2018)
- 5. Transcriptomic profiles of confirmed pediatric tuberculosis patients and exposed household contacts identifies tuberculosis disease, infection, and response to treatment among Indian patients

Tornheim JA, Madugundu A, Paradkar M, Gupte N, Fukutani KF, Gupte AN, Kinikar A, Kulkarni V, Balasubramanian U, Sreenivasamurthy S, Raja R, Pradhan N, Shivakumar SVBY, Valvi C, Hanna LE, Andrade B, Chandrasekaran P, Mave V, Pandey A, Gupta A for the CTRIUMPh RePORT India Study Team. (Submitted: Journal of Infectious Diseases; December 2018)

6. Lack of association between TIRAP variants and disease severity among the active tuberculosis patients from South India

Rajagopalan S, Pattabiraman S, Thiruvengadam K, Selvachithiram M, Shivakumar SVBY, Sivaramakrishnan GN, Dhanasekaran K, Paradkar M, Puvaneshwari R, Muthuramalingam K, Madheswaran A, Pradhan N, Kulkarni V, Gupte AN, Gupte N, Mave V, Gupta A, Chandrasekaran P, Hanna LE for the C-TRIUMPh Study Team. (Submitted: International Journal of Tuberculosis and Lung Disease)

7. Assessment of lung function in successfully treated tuberculosis reveals high burden of ventilatory defects and COPD

Gupte A; Paradkar A; Selvaraju S; Thiruvengadam K; Shivakumar SVBY; Sekar K; Marinaik S; Momin A; Gaikwad A; Natrajan P; Prithivi M; Shivaramakrishnan G; Pradhan N; Kohli R; Raskar S; Jain D; Velu R; Karthavarayan B; Lokhande R; Suryavanshi N; Gupte N; Murali L; Salvi S; Checkley W; Golub J; Bollinger R; Mave V; Chandrasekaran P; Gupta A. (*Under review; December 2018*)

8. Respiratory health status is associated with treatment outcomes in pulmonary tuberculosis Gupte, A; Selvaraju S; Paradkar M; Dhanasekaran K; Shivakumar SVBY; Thiruvenkadam K; Dolla CK; Sivaramakrishnan GN; Pradhan N; Kohli R; John S; Raskar S; Jain D; Momin, A; Subramanian B; Gaikwad A; Lokhande R; Suryavanshi N; Gupte N; Salvi S; Murali L; Checkley W; Golub JE; Bollinger R; Chandrasekaran P; Mave V; Gupta A. (Accepted: International Journal of Tuberculosis and Lung Disease; September 2018)

9. Barriers to screening and isoniazid preventive treatment for child contacts tuberculosis patients

Belgaumkar V, Chandanwale A, Valvi C, Pardeshi G, Lokhande R, Kadam D, Joshi S, Gupta N, Jain D, Dhumal G, Deluca A, Golub J, Shankar A, Gupta A, Kinikar A, Bollinger RC. Int J Tuberc Lung Dis. 2018 Oct 1;22(10):1179-1187. doi: 10.5588/ijtld.17.0848.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30236186

Collaborating Organizations:

- Byramjee Jeejeebhoy Government Medical College/Sassoon General Hospital, Pune.
- Department of Community Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi.
- Byramjee Jeejeebhoy Government Medical College/Johns Hopkins Clinical Trials Unit, Pune, India.
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
- Byramjee Jeejeebhoy Government Medical College/Johns Hopkins Clinical Trials Unit, Pune, India, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

10. Tuberculin skin test and QuantiFERON-Gold In tube assay for diagnosis of latent TB infection among household contacts of pulmonary TB patients in a high TB burden setting

Chandrasekaran P, Mave V, Thiruvengadam K, Gupte N, Shivakumar SVBY, Hanna LE, Kulkarni V, Kadam D, Dhanasekaran K, Paradkar M, Thomas B, Kohli R, Dolla C, Bharadwaj R, Sivaramakrishnan GN, Pradhan N, Gupte A, Murali L, Valvi C, Swaminathan S, Gupta A; CTRIUMPH Study Team. PLoS One. 2018 Aug 1;13(8):e0199360. doi: 10.1371/journal.pone.0199360. eCollection 2018.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30067752

Collaborating Organizations:

- Department of Clinical Research, National Institute for Research in Tuberculosis, Chennai, India.
- Johns Hopkins University School of Medicine, Baltimore, United States of America.
- Byramiee- leejeebhoy Government Medical College- Johns Hopkins University Clinical Research Site, Pune, India.
- Johns Hopkins University-India office, Pune, India.
- Department of Medicine, Byramjee Jeejeebhoy Government Medical College, Pune, India.
- Johns Hopkins Bloomberg School of Public Health, Baltimore, United States of America.
- Department of Chest Medicine, Government Headquarters Hospital, Thiruvallur, India.
- Indian Council of Medical Research, New Delhi, India.

11. Trends in HbA1c levels and implications for diabetes screening in tuberculosis cases undergoing treatment in India

Gupte AN, Mave V, Meshram S, Lokhande R, Kadam D, Dharmshale S, Bharadwaj R, Kagal A, Pradhan N, Deshmukh S, Atre S, Sahasrabudhe T, Barthwal M, Meshram S, Kakrani A, Kulkarni V, Raskar S, Suryavanshi S, Shivakoti S, Chon S, Selvin E, Gupte N, Gupta A, Golub JE. Int J Tuberc Lung Dis. 2018 Jul 1;22(7):800-806. doi: 10.5588/ijtld.18.0026. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30041729

Collaborating Organizations:

Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Johns Hopkins Clinical Trials Unit, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
- Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
- Dr D Y Patil Medical College, Pune, India

12. Addressing knowledge gaps and prevention for tuberculosis-infected Indian adults: a vital part of elimination

Deluca A, Dhumal G, Paradkar M, Suryavanshi N, Mave V, Kohli R, Shivakumar SVBY, Hulyolkar V, Gaikwad A, Nangude A, Pardeshi G, Kadam D, Gupta A. Published in BMC Infectious Diseases, May 2018. BMC Infect Dis. 2018 May 2;18(1):202. doi: 10.1186/s12879-018-3116-7.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29720095

Collaborating Organizations:

- Johns Hopkins Bloomberg School of Public Health, International Health, Baltimore, MD, USA
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Trials Unit, Pune, India.
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Byramjee-Jeejeebhoy Government Medical College, Pune, India.
- Department of Community Medicine, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India.
- Johns Hopkins Bloomberg School of Public Health, International Health, Baltimore, MD, USA.

13. Building capacity for advances in tuberculosis research; proceedings of the third RePORT International meeting

Van der Heijden YF, Abdullah F, Andrade BB, Andrews JR, Christopher DJ, Croda J, Ewing H, Haas DW, Hatherill M, Horsburgh CR Jr, Mave V, Nakaya HI, Rolla V, Srinivasan S, Sugiyono RI, Ugarte-Gil C, Hamilton C. Tuberculosis (Edinb). 2018;113: 153-162.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30514497

Collaborating Organizations:

RePORT International

14. Diabetes and prediabetes among household contacts of TB patients in India: Is it time to screen them all?

Shivakumar SVBY, Chandrasekaran P, Kumar AMV, Paradkar M, Dhanasekaran K, Suryavarshini N, Thomas B, Kohli R, Thiruvengadam K, Kulkarni V, Hannah LE, Gomathy NS, Pradhan N, Dolla C, Gupte A, Ramachandran G, DeLuca A, Meshram S, Bhardawaj R, Bollinger RC, Golub J, Selvaraj K, Gupte N, Swaminathan S, Mave V, Gupta A for the CTRIUMPH- RePORT India Study Team. Int J Tuberc Lung Dis. 2018 Jun; 22(6): 686-694. Doi: 10.5588/ijtld.17.0598.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29862955

Collaborating Organizations:

- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- Johns Hopkins Clinical Trials Unit, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
- Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
- Indian Council of Medical Research, New Delhi, India
- International Union for TB and Lung Diseases, Paris

15. Sources of household air pollution and their association with fine particulate matter in low-income urban homes in India

Elf JL, Kinikar A, Khadse S, Mave V, Suryavanshi N, Gupte N, Kulkarni V, Patekar P, Raichur P, Breysse P, Gupta A, Golub JE. J Expo Sci Environ Epidemiol. 2018 Jun;28(4):400-410. Doi: 10.1038/s41370-018-0024-2. Epub 2018 May 23. PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29789668

16. Second hand smoke exposure and validity of self-report in low-income women and children in India

Elf J, Kinikar A, Khadse S, Mave V, Gupte N, Kulkarni V, Patekar V, Raichur P, Cohen J, Breysse PN, Gupta A, Golub JE. Pediatrics. 2018 Jan; 141 (Suppl 1): S118-S129. doi: 10.1542/peds.2017-1026O.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29292312

Collaborating Organizations:

- Division of Infectious Disease, School of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Schroeder Institute for Tobacco Research and Policy Studies at Truth Initiative, Washington, DC, USA
- Department of Pediatrics, Sassoon General Hospital and Byramjee Jeejeebhoy Medical College, Pune, India
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA

17. Isoniazid concentrations in hair and plasma area-under-the-curve exposure among children with tuberculosis

Mave V, Kinikar A, Kagal A, Nimkar S, Koli H, Khwaja S, Bharadwaj R, Gerona R, Wen A, Ramachandran G, Kumar H, Bacchetti P, Dooley KE, Gupte N, Gupta A, Gandhi M. PLoS One. 2017 Dec 7;12(12):e0189101. doi: 10.1371/journal.pone.0189101.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29216273

Collaborating Organizations:

- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India.
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Byramjee-Jeejeebhoy Government Medical College, Pune, India
- University of California San Francisco, San Francisco, USA
- National Institute of Research in Tuberculosis, Chennai, India

18. Prevalence of dysglycemia and clinical presentation of pulmonary tuberculosis in Western India

Mave V, Meshram S, Lokhande R, Kadam D, Dharmshale S, Bharadwaj R, Kagal A, Pradhan N, Deshmukh S, Atre S, Sahasrabudhe T, Barhwal M, Meshram S, Kakrani A, Kulkarni V, Raskar S, Suryavanshi N, Shivakoti R, Chon S, Selvin E, Gupte A, Gupte A, Gupte N, Golub J. Int J Tuberc Lung Dis. 2017 Dec 1;21(12):1280-1287. doi: 10.5588/ijtld.17.0474

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29297449

Collaborating Organizations:

- Byramjee-Jeejeebhoy Medical College-Johns Hopkins University Clinical Research Site, Pune, India
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Dr D Y Patil Medical College, Pune, India
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

19. Isoniazid hair concentrations in children with tuberculosis: a proof of concept study

Mave V, Chandanwale A, Kinikar A, Khadse S, Kagal A, Gupte N, Suryavanshi N, Nimkar S, Koli H, Khwaja S, Bharadwaj R, Joshi S, Horng H, Benet LZ, Ramachandran G, Dooley KE, Gupta A, Gandhi M.Int J Tuberc Lung Dis. 2016 Jun; 20(6): 844–847. doi: 10.5588/ijtld.15.0882

PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4889729/

Collaborating Organizations:

- Byramjee-Jeejeebhoy Medical College Clinical Trials Unit, Pune, India
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- University of California, San Francisco, CA, USA
- National Institute of Research in Tuberculosis, Chennai, India

20. Cohort for Tuberculosis Research by the Indo-US Medical Partnership (CTRIUMPH): protocol for a multicentric prospective observational study

Gupte A, Padmapriyadarsini C, Mave V, Kadam D, Suryavanshi N, Shivakumar SVBY, Kohli R, Gupte N, Thiruvengadam K, Kagal A, Meshram S, Bharadwaj R, Khadse S, Ramachandran G, Hanna LE, Pradhan N, Gomathy NS, DeLuca A, Gupta A, Swaminathan S; CTRIUMPH Study Team. BMJ Open 2016 Feb 25;6(2):e010542.

PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26916698

Collaborating Organizations:

- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
- National Institute for Research in Tuberculosis, Chennai, Tamil Nadu, India
- Johns Hopkins Clinical Trials Unit, Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
- Byramjee Jeejeebhoy Government Medical College, Pune, Maharashtra, India
- Indian Council of Medical Research, New Delhi, India

Christian Medical College, Vellore (CMC-Vellore)/University of Cambridge-University of Washington (CRU 101)

1. Burden of diabetes among patients with tuberculosis: 10 year experience from a tertiary care referral teaching hospital in South India

Christopher DJ, Jeyaseelan L, Yadav B, Balaji V, Michael JS, Gupta M, Manipadam MT, Sudarsanam TD. (Submitted for publication)

2. Prevalence of active TB disease and latent TB infection in patients with type 2 diabetes mellitus in tertiary care hospital of India

Christopher DJ, Dabhi P, Naik D, Nihal T, Prince J, Thangakunam B, Gupta R. (Submitted for publication)

3. Thoracoscopic pleural biopsy improves yield of Xpert MTB/RIF for diagnosis of pleural tuberculosis

Christopher DJ, Dinakaran S, Gupta R, James P, Isaac B, Thangakunam B. Respirology. 2018 Jul;23(7):714-717. doi: 10.1111/resp.13275. Epub 2018 Feb 27.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29486527

Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER)/Boston Medical Center (BMC) (CRU 102)

1. Effect of malnutrition on radiographic findings and mycobacterial burden in pulmonary tuberculosis

Hoyt K, Sarkar S, White LF, Joseph NM, Salgame P, Lakshminarayanan S, Muthaiah M, Kumar SV, Ellner, JJRoy G, Horsburgh CR Jr, Hochberg NS (Submitted: PLoS One)

2. Additive and multiplicative interactions between body mass index and diabetes mellitus in latent tuberculosis infection and active tuberculosis disease in south India

Kubiak R, Sarkar S, Horsburgh CR Ir, Roy G, Kratz M, Reshma, Knudsen S, Salgame P, Ellner JJ, Drain PK, Hochberg NS. (Submitted: Am Journal of Epidemiology)

3. Crystal ball: the yesterday and tomorrow of tuberculosis

Sinha P, Hochberg NS. Environ Microbiol Rep. 2018 Dec 25. doi: 10.1111/1758-2229.12726. [Epub ahead of print] **PubMed:** https://www.ncbi.nlm.nih.gov/pubmed/30585431

4. Undernutrition and tuberculosis: Public health implications

Sinha P, Davis I, Saag L, Wanke C, Salgame P, Mesick J, Horsburgh CR Jr, Hochberg NS J Infect Dis. 2018 Nov 22. doi: 10.1093/infdis/jiy675. [Epub ahead of print]

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30476125

5. Low BMI and latent tuberculosis infection: a systematic review and meta-analysis

Saag LA, LaValley MP, Hochberg NS, Cegielski P, Pleskunas JA, Linas B, Horsburgh CR. Int J Tuberc Lung Dis. 2018 Apr 1;22(4):358-365. doi: 10.5588/jitld.17.0558.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29562981

6. Existing blood transcriptional classifiers accurately discriminate active tuberculosis from latent infection in individuals from South India

Leong, S, Yue Zhao, Joseph NM, Hochberg NS, Sarkar S, Pleskunas J, HomD, Lakshminarayanan S, Horsburgh Jr, CR, Roy G, Ellner JJ, Johnson WE, Salgame, P. Tuberculosis (Edinb). 2018 Mar;109:41-51. doi: 10.1016/j.tube.2018.01.002. Epub 2018 Jan 31.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29559120

Collaborating Organizations:

- Centre for Emerging Pathogens, Department of Medicine, Rutgers-New Jersey Medical School, Newark, NJ, USA
- Division of Computational Biomedicine and Bioinformatics Program, Boston University, Boston, MA, USA
- Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
- Boston Medical Centre, Boston, MA, USA
- Boston University, School of Public Health, Boston, MA, USA
- Department of Biostatistics, Boston University, Boston, MA, USA

7. Comorbidities in pulmonary tuberculosis cases in Puducherry and Tamil Nadu, India: Opportunities for intervention

Hochberg NS, Sarkar S, Horsburgh, Jr, CR, Knudsen S, Pleskunas J, Sahu S, Kubiak RW, Govindarajan S, Salgame P, Lakshminarayanan S, Sivaprakasam A, White LF, Joseph NM, Ellner JJ, Roy G. PLoS One. 2017;12(8): e0183195. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5568341

Collaborating Organizations:

- Boston University School of Medicine, Boston, MA, USA
- Boston University School of Public Health, Boston, MA, USA
- Boston Medical Center, Boston, MA, USA
- Government Chest Clinic, Puducherry, India
- Rutgers University, Newark, New Jersey, USA

8. Predictors of delay to accessing care among tuberculosis patients in southern India. (Predictors of delayed care seeking for tuberculosis in Southern India: an observational study)

Van Ness SE, Chandra A, Sarkar S, Pleskunas J, Ellner JJ, Roy G, Lakshminarayanan S, Sahu S, Horsburgh Jr CR, Jenkins HE. Hochberg NS. BMC Infect Dis. 2017 Aug 15:17(1):567, doi: 10.1186/s12879-017-2629-9.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28806911

Collaborating Organizations:

- Boston University Department of Biostatistics, Boston, MA, USA
- Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry, India
- Boston Medical Center, Boston, MA, USA
- Boston University School of Medicine, Boston, MA, USA
- Boston University School of Public Health, Boston, MA, USA

9. Advances in basic and translational tuberculosis research proceedings of the first meeting of RePORT international

Geadas C, Stoszek SK, Sherman D, Andrade BB, Srinivasan S, Hamilton CD, Ellner J. Tuberculosis. 2016. doi: 10.1016/j.tube.2016.11.006

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28061953

Collaborating Organizations:

- Boston Medical Center and Boston University School of Medicine, Department of Internal Medicine, Section of Infectious Diseases, Boston, MA, USA
- Health Studies Sector, Westat, Rockville, MD, USA
- Center for Infectious Disease Research, Seattle, Washington, USA
- Unidade de Medicina Investigativa, Laboratório Integrado de Microbiologia e Imunorregulação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Scientific Affairs, Global Health, Population and Nutrition, FHI 360
- Department of Medicine, Division of Infectious Diseases, Duke University, School of Medicine, Durham, North Carolina, USA

MV Diabetes Research Centre – NIRT-NIH-ICER /University of Massachusetts (CRU 103)

I. Heightened circulating levels of antimicrobial peptides in tuberculosis-diabetes co-morbidity and reversal upon treatment

Kumar NP, Moideen K, Viswanathan V, Sivakumar S, Menon PA, Kornfeld H, Babu S. PLoS One. 2017 Sep 14;12(9):e0184753. doi: 10.1371/journal.pone.0184753. eCollection 2017.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28910369

Collaborating Organizations:

- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
- Prof. M. Viswanathan Diabetes Research Center, Chennai, India
- National Institute for Research in Tuberculosis, Chennai, India
- University of Massachusetts Medical School, Worcester, MA, USA
- LPD, NIAID, NIH, Bethesda, MA, USA

2. Systems immunology of diabetes tuberculosis comorbidity reveals signatures of disease complications

Prada-Medina CA, Fukutani KF, Kumar NP, GilSantana L, Babu S, Lichtenstein F, West K, Sivakumar S, Menon PA, Viswanathan V, Andrade BB, Nakaya HI, Kornfeld H. Sci Rep. 2017 May 17;7(1):1999. doi: 10.1038/s41598-017-01767-4.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28515464

Collaborating Organizations:

- Department of Pathophysiology and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratório de Imunoparasitologia, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- National Institutes of Health- NIRT International Center for Excellence in Research, Chennai, India
- Unidade de Medicina Investigativa, Laboratório Integrado de Microbiologia e Imunorregulação, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
- Multinational Organization Network Sponsoring Translational and Epidemiological Research, Instituto Brasileiro para a Investigação da Tuberculose, Fundação José Silveira, Salvador, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador, Brazil
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- National Institute for Research in Tuberculosis, Chennai, India
- Prof. M. Viswanathan Diabetes Research Center, Chennai, India
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA

3. Defining a research agenda to address the converging epidemics of tuberculosis and diabetes. Part 2: Underlying biological mechanisms

Ronacher K, van Crevel R, Critchley J, Bremer A, Schlesinger LS, Kapur A, Basaraba R, Kornfeld H, Restrepo BI. Chest. 2017 Jul; 152(1):174-180. doi: 10.1016/j.chest.2017.02.032. Epub 2017 Apr 20.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28434937

Collaborating Organizations:

- Mater Research Institute-The University of Queensland, Translational Research Institute,
- Woolloongabba, Queensland, Australia
- Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical TB Research/Medical Research Council Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Internal Medicine, Radbourd University Medical Center, Nijmegen, the Netherlands
- Population Health Research Institute, St George's, University of London, UK
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Microbial Infection & Immunity, The Ohio State University, Ohio, USA
- World Diabetes Foundation, Copenhagen, Denmark
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
- Department of Medicine, University of Massachusetts Medical School, USA
- University of Texas Health Science Center Houston, School of Public Health, Brownsville Campus, Texas, USA

4. Defining a research agenda to address the converging epidemics of tuberculosis and diabetes. Part 1: Epidemiology and clinical management

Critchley JA, Restrepo BI, Ronacher K, Kapur A, Bremer AA, Schlesinger LS, Basaraba R, Kornfeld H, van Crevel R. Chest. 2017 Jul;152(1):165-173. doi: 10.1016/j.chest.2017.04.155. Epub 2017 Apr 20.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28434936

Collaborating Organizations:

Population Health Research Institute, St George's, University of London, UK

- University of Texas Health Science Center Houston, School of Public Health, Brownsville
- Campus, Texas, USA
- Mater Research Institute The University of Queensland, Translational Research Institute, Woolloongabba, Oueensland, Australia
- World Diabetes Foundation, Copenhagen, Denmark
- Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Microbial Infection & Immunity, The Ohio State University, Ohio, USA
- Department of Microbiology, Immunology and Pathology, Colorado State University, Colorado, USA
- Department of Medicine, University of Massachusetts Medical School, USA
- Department of Internal Medicine, Radbourd University Medical Center, Nijmegen, the Netherlands

5. Tuberculosis-diabetes co-morbidity is characterized by heightened systemic levels of circulating angiogenic factors

Kumar NP, Moideen K, SivakumarS, Menon PA, Viswanathan V, Kornfeld H, Babu S.J Infect. 2017 Jan;74(1):10-21. doi: 10.1016/j.jinf.2016.08.021. Epub 2016 Oct 4.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27717783

Collaborating Organizations:

- National Institutes of Health-NIRT-International Center for Excellence in Research, Chennai, India
- Prof. M. Viswanathan Diabetes Research Center, Chennai, India
- University of Massachusetts Medical School, Worcester, MA, USA
- LPD, NIAID, NIH, MD, USA

6. Modulation of dendritic cell and monocyte subsets in tuberculosis-diabetes co-morbidity upon standard tuberculosis treatment

Kumar NP, Moideen K, Sivakumar S, Menon PA, Viswanathan V, Kornfeld H, Babu S. Tuberculosis (Edinb). 2016 Dec; 101:191-200. doi: 10.1016/j.tube.2016.10.004. Epub 2016 Oct 11.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27865391

Collaborating Organizations:

- National Institutes of HealthNIRTInternational Center for Excellence in Research, Chennai, India
- Prof. M. Viswanathan Diabetes Research Center, Chennai, India
- National Institute for Research in Tuberculosis, Chennai, India
- University of Massachusetts Medical School, Worcester, MA, USA
- LPD, NIAID, NIH, MD, USA

7. Effect of standard tuberculosis treatment on naive, memory and regulatory T-cell homeostasis in tuberculosis-diabetes co-morbidity

Kumar NP, Moideen K, Viswanathan V, Kornfeld H, Babu S. Immunology. 2016 Sep;149(1):87-97. doi: 10.1111/imm.12632. Epub 2016 Jul 26.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/27289086

Collaborating Organizations:

- National Institutes of Health NIRT International Centre for Excellence in Research, Chennai, India
- Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
- University of Massachusetts Medical School, Worcester, MA, USA
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA

8. High prevalence and heterogeneity of diabetes in patients with TB in South India: A report from the Effects of Diabetes on Tuberculosis Severity (EDOTS) Study

Kornfeld H, West K, Kane K, Kumpatla S, Zacharias RR, Martinez-Balzano C, Li W, Viswanathan V. Chest. 2016 Jun;149(6):1501-8. doi: 10.1016/j.chest.2016.02.675. Epub 2016 Mar 10.

PubMed: http://www.ncbi.nlm.nih.gov/pubmed/26973015

Collaborating Organizations:

- University of Massachusetts Medical School, Worcester, MA, USA
- Prof. M. Viswanathan Diabetes Research Center, Royapuram, India

P.D. Hinduja National Hospital and Medical Research Center/ Johns Hopkins University (JHU) (CRU 108)

I. Few eligible for the newly recommended short course MDR-TB regimen at a large Mumbai private clinic

Udwadia ZF, Tornheim JA, Ganatra S, DeLuca A, Rodrigues CS, Gupta A. (Accepted: BMC Infectious Diseases; 2019)

2. Utility of pyrosequencing for rapid detection of tubercular meningitis (TBM) and associated susceptibility directly from CSF specimens

Ajbani K, Kazi M, Naik S, Soman R, Shetty A, Rodrigues C. Tuberculosis (Edinb). 2018 Jul;111:54-56. doi: 10.1016/j.tube.2018.05.009. Epub 2018 May 19.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30029915

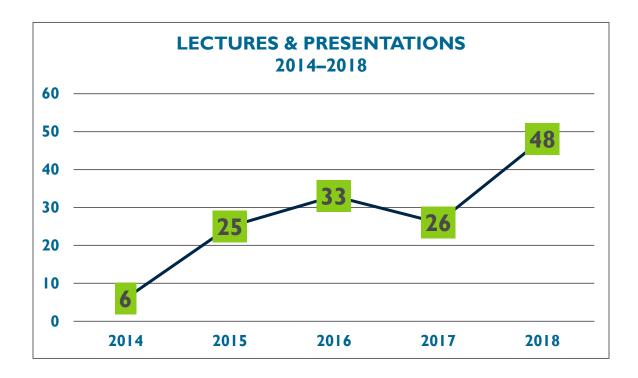
3. Pyrosequencing to resolve discrepant Xpert MTB/RIF and Mycobacterial Growth Indicator Tube 960

Ajbani K, Kazi M, Tornheim J, Naik S, Soman R, Shetty A, Rodrigues C. Lung India. 2018 Mar-Apr;35(2):168-170. doi: 10.4103/lungindia.lungindia 71 17.

PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29487256

4. Evaluation of pyrosequencing for extensive drug resistance-defining anti-tuberculosis drugs for use in public healthcare

Nambiar R, Shah D, Ajbani K, Kazi M, Sadani M, Shetty A, Keskar P, Kamble S, van Belkum A, Rodrigues C. Tuberculosis (Edinb). 2018 May;110:86-90. doi: 10.1016/j.tube.2018.03.006. Epub 2018 Mar 26.


PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29779779

Lectures & Presentations

RePORT India

8TH ANNUAL JOINT LEADERSHIP MEETING BIOMARKERS & BEYOND CHENNAI | 4-6 FEB 2019 This page is intentionally blank

Category Definitions

LECTURE: Individual presentation on a topic of field of expertise

PRESENTATION: Multiple authors, includes poster and oral discussions

RePORT India Consortium

LECTURE

 Gupta A. An Overview of the RePORT India Consortium. Presented at: Annual leDEA Meeting; National Institutes of Health; June 22, 2016; Rockville, MD, USA.

PRESENTATION/ABSTRACT

 Hamilton CD, Ellner J, Swaminathan S, Christopher D, Gupta A, Sterling T, Rolla VC, Stoszek S. Regional Prospective Observational Research for Tuberculosis (RePORT) Consortia using a Common Protocol to Collect Specimens for Biomarker Research. Poster presented at: 45thUnion World Conference on Lung Health of the International Union Against TB and Lung Disease; October 28-November 1, 2014; Barcelona, Spain.

Bhagwan Mahavir Medical Research Centre (BMMRC)/ University of Texas Health Science Center at Tyler

PRESENTATIONS/ABSTRACTS

- Devalraju KP, Neela VSK, Chaudhury A, Vankayalapati R, Valluri VL. NK cells and Memory-like NK Cells as Immunological Markers of Protection against Latent TB Conversion in Household Contacts of TB Patients. Abstract Presented at the 5th Global Forum on TB Vaccines; February 20-23, 2018; New Delhi, India.
- Neela VSK, Devalraju KP, Sumnalatha G, Chowdary A, Ansari MS, Vankayalapati R, Valluri VL. CD14+ CD16+ Cells as Immunological Marker for Protection in Household Contacts with Latent Tuberculosis Infection.
 Abstract Presented at the 5thGlobal Forum on TB Vaccines; February 20-23, 2018; New Delhi, India.
- Devalraju KP. Identify Potential Biomarkers for Development of Latent Tuberculosis Infection (LTBI) by Longitudinal Follow-Up of HHC's of TB Patients. Presented at:RePORT International 2016 Meeting; July 14-15, 2016.
- Cheekatla SS, Tripathi D, Venkatasubramanian S, Nathella PK, Paidipally P, Ishibashi M, Welch E, Tvinnereim AR, Mitsuo I, Babu S, Kornfeld H, Vankayalapati R. NK-DC Crosstalk in Diabetes Enhances II-6 Mediated Inflammation during Tuberculosis Infection. Poster presented at: Keystone Symposium on Tuberculosis Co-Morbidities and Immunopathogenesis (B6); February 28-March 3, 2016; Keystone, CO, USA.
- Cheekatla SS, Venkatasubramanian S, Tripathi D, Paidipally P, Welch E, Tvinnereim AR, Vankayalapati R. IL-21 Is
 Essential for the Optimal Control of Mycobacterium tuberculosis Infection. Presented at: American
 Association of Immunologist Meeting; May 8-12, 2015; New Orleans, LA, USA.
- Cheekatla SS, Tripathi D, Venkatasubramanian S, Paidipally P, Welch E, Tvinnereim AR, Kornfeld H, Vankayalapati R.
 IL-6 regulates Pro- and Anti-Inflammatory Cytokine Production and Mortality of Mycobacterium tuberculosis Infected Type 2 Diabetic Mice. Presented at: American Association of Immunologist Meeting; May 8-12, 2015; New Orleans, LA, USA.
- Tripathi D, Venkatasubramanian S, Cheekatla SS, Paidipally P, Welch E, Tvinnereim AR, Vankayalapati R.
 CD4+CD25+Foxp3+ Cells from JNK-/- Mice Prolong Pancreatic Allograft Survival in Type I Diabetic Mice. Presented at: American Association of Immunologist Meeting; May 8-12, 2015; New Orleans, LA, USA.
- Tripathi D, Venkatasubramanian S, Cheekatla SS, Paidipally P, Welch E, Tvinnereim AR, Vankayalapati R. Liver NK1.1
 Cells and IL-22 Promote Pancreatic Islets Allograft Survival in Type I Diabetic Mice. Presented at: American Association of Immunologist Meeting; May 8-12, 2015; New Orleans, LA, USA.
- Venkatasubramanian S, Dhiman R, Paidipally P, Cheekatla SS, Tripathi D, Welch E, Tvinnereim AR, Brenda Jones B, Theodorescu D, Barnes PF, Vankayalapati R. A Rho GDP Dissociation Inhibitor Produced by Apoptotic T-cells Inhibits Growth of Mycobacterium tuberculosis. Presented at: American Association of Immunologist Meeting; May 8-12, 2015; New Orleans, LA, USA.
- Venkatasubramanian S, Paidipally P, Cheekatla SS, Welch E,Raghunath A, Tvinnereim AR, Nurieva R,Barnes PF, Vankayalapati R. IL-21 Dependent Expansion of Memory-like NK Cells Enhances Protective Immune Responses against Mycobacterium tuberculosis. Presented at: NK 2015—15thMeeting of the Society for Natural Immunity; May 2-6, 2015; Montebello, Canada.

Byramjee Jeejeebhoy Medical College (BJMC)/National Institute for Research in Tuberculosis (NIRT)/Johns Hopkins University (JHU) – Lectures/Abstracts/ Posters/ Presentations

LECTURES

- Gupta A. **RePORT India Symposium.** Convener and Moderator, 49th Union World Conference on Lung Health. October 25, 2018; The Hague, The Netherlands.
- Kinikar A . **Update on RICC Pediatric Transcriptomic Study-India component**. RePORT International Annual Meeting. September 12-14, 2018; Szouchou, China.
- Gupta A. RePORT India Overview. Presented at: CFAR RePORT International Meeting; July 2, 2018; Rockville, MD.
- Gupta A. Global Health Diplomacy: Why It Really Matters! Keynote Address. AAAS Science & Technology, May 31, 2018. Washington, DC (RePORT India described)
- Gupta, A. **The Challenge of Eliminating TB in India.** Keynote Address. University of Washington TB Symposium. May 18, 2018; Seattle, WA.
- Chandrasekaran P, **TB Research in India**. Presented at: 1st BRICS TB Research Network Meeting. September 14-15, 2017; Rio de Janeiro, Brazil.
- Chandrasekaran P. Ongoing Research and Research Priorities for India on LTBI. Presented at: WHO
 Global TB Programme Technical Consultation Meeting on Programmatic Management of Latent Tuberculosis
 Infection (LTBI). August 31-September 1, 2017; Seoul, Republic of Korea.
- Gupta, A. Conducting HIV and TB Research in India: Challenges and Opportunities. August 27, 2015; Emory University, Atlanta, GA.
- Gupta, A. Conducting HIV and TB Research in India: Challenges and Opportunities. June 23, 2016;
 University of Texas Health Science Center, Tyler, TX.
- Gupta A. TB in Pregnancy. Presented at: RePORT India meeting: Advancing TB Research; February 2, 2016;
 CMC Vellore, India.
- Gupta A. TB in Pregnancy. Presented at: RePORT India TB Workshop; March 5, 2015; Mumbai, India.
- Gupta A. Panelist. Leveraging Collective Impact to Promote India's Development: The Role of the Indian Diaspora in the Fight Against Tuberculosis. Diaspora TB Event, Georgetown University. November 9, 2017; Washington, DC.
- Mave V. RePORT India: Objectives and Future Directions. Presented at: TB Vaccine 4thGlobal Forum; 2015; Shanghai, China.
- Mave V. Therapeutic Drug Monitoring (TDM) of TB in Young Children: The Role of Hair Assays. Presented at: IMPAACT Annual Meeting; June 2015; Washington DC, USA.

PRESENTATIONS/ABSTRACTS:

- Shivakoti R, Chandrasekaran P, Hannah LE, Thiruvengadam K, Natarjan S, Karunaianatham R, Mave V, Gupte N, Kulkarni V, Pradhan N, Gupte A, Paradkar M, Shivakumar SVBY, Bharadwaj R, Kagal A, Gaikwad S, Sangle S, Borkowski K, Newman J, Fiehn O, Gupta A for CTRIUMPH RePORT India Study team. Host lipidomic profile associated with adverse tuberculosis treatment outcomes. Submitted at 8th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership meeting "Biomarkers and Beyond" February 4-6, 2019, Chennai, India
- Gupte AN, Paradkar M, Selvaraju S, Kumar P, Lokhande R, Kulkarni V, Hanna LE, Thiruvengadam K, Sekar K, Momin A, Shivakumar SVBY, Gupte N, Babu S, Salvi S, Golub J, Checkley W, Bollinger B, Andrade B, Mave V, Chandrasekaran P, Gupta A. IL-6, TIMP-2 and TGFβ-2 are associated with respiratory impairment

- during and following successful treatment of pulmonary tuberculosis. Submitted at 8th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership meeting "Biomarkers and Beyond" February 4-6, 2019, Chennai, India
- DeLuca A, Thomas B, Suryavanshi N, Jain D, Paradkar M, Gupte A, Chandrasekaran P, Gupta A for the CTRIUMPH RePORT India Study Team. Alcohol Use Disorder, Drinking Patterns, and Tuberculosis Treatment Failure in Indian Patients. 49th Annual Union World Conference on Lung Health. The Hague, The Netherlands. October 24-27, 2018.
- Gupte A, Kumar P, Kulkarni V, Bharadwaj R, Andrade B, Mave V, Chandrasekaran P, Gupta A. Interleukin-6, Interleukin-13 and Interferon-γ as Potential Biomarkers for Treatment Failure in Pulmonary Tuberculosis. 49th Annual Union World Conference on Lung Health. The Hague, The Netherlands. October 24-27, 2018.
- Gupte N, Gupte A, Sivaramakrishnan GN, Pradhan N, Shivakumar SVBY, Gupta A, Mave V, Chandrasekaran P for the CTRIUMPh RePORT India team. Time to culture conversion, identifying independent modifiable risk factors in Indian patients. Presented at 49th Union World Conference on Lung Health. The Hague, The Netherlands. October 24-47, 2018.
- Thomas B, Kannan T, Rani V, Gupte N, Gupta A, Deluca A, Suryavanshi N, Kohli R, Chandrasekaran P for the CTRIUMPH RePORT India Study Team. Does Smoking Have an Impact on TB Treatment Outcomes? A Prospective Cohort Study from India. Session: Tobacco Use in Various Populations: Implications for Policy and Practice. 49th Annual Union World Conference on Lung Health. The Hague, The Netherlands. October 24-27, 2018.
- Ramachandran G, Chandrasekaran P, Gaikwad S, Kumar AKH, Thiruvengadam K, Gupte N, Paradkar M,
 Dhanasekaran K, Sivaramakrishnan GN, Kagal A, Thomas B, Pradhan N, Kadam D, Hanna LE, Balasubramanian U,
 Kulkarni V, Murali L, Golub J, Gupte A, Shivakumar SVBY, Swaminathan S, Dooley KE, Gupta A, Mave V for CTRIUMPh team. Sub-therapeutic Rifampicin concentration among thrice weekly treated PTB patients
 with unfavourable treatment outcomes. 49th Annual Union World Conference on Lung Health. The Hague,
 The Netherlands. October 24-27, 2018.
- Gupte A, Paradkar M, Selvaraju S, Shivakumar SVBY, Kohli R, Momin A, Gaikwad S, Jain D, Raskar S, Suryavanshi N, Thiruvengadam K, Sekar K, Kumar B, Yashoda R, Lokhande R, Gupte N, Golub J, Chandrasekaran P, Mave V, Gupta A. Hyperglycemia and Lung Function Impairment in Treated Pulmonary Tuberculosis.
 RePORT International Young Investigator Abstract Presentation for the RePORT International Annual Meeting, September 12-14, 2018, Suzhou, China.
- Paradkar M, Chandrasekaran P, Shivakumar SVBY, Jain D, Thiruvengadam K, Gupte A, Thomas B, Kinikar A, Bharadwaj R, Gaikwad S, Lokhande R, Dolla CK, Selvaraju S, Murali L, Rajagopal S, Kulkarni V, Pradhan N, Hannah LE, Pattabiraman S, Kohli R, Nayagam R, Suryavanshi N, Cox S, Gupte N, Mave V, Gupta A for the CTRIUMPh Study Team. Incidence of Mycobacterium tuberculosis Infection among Household Contacts of Adult Pulmonary Tuberculosis Cases in India. RePORT International Young Investigator Abstract Presentation for the RePORT International Annual Meeting, September 12-14, 2018, Suzhou, China
- Dolla CK, Paradkar M, Gupte A, Thiruvenkadam K, Gupte N, Kukarni V, Balasubranian U, Hannah LE, Dhanasekaran K, Bharadwaj R, Shivakumar SVBY, Gaikwad S, Meshram S, Kohli R, Lokhande R, Thomas B, Kinikar A, Swaminathan S, Mave V, Gupta A, Chandrasekaran P. TB Infection among Household Contacts:
 Preventive Therapy for All? Accepted for poster presentation at: 5th Global Forum on TB Vaccines; February 20-23, 2018; New Delhi, India.
- Dhanasekaran K, Chandrasekaran P, Paradkar M, Marinaik SB, Gupte A, Dolla CK, Joseph B, Subramanyam B, Sivaramakrishnan GN, Thiruvengadam K, Gupte N, Rajagopal S, Pradhan N, Selvaraju S, Kulkarni V, Hannah LE, Nayakam R, Suryavanshi N, Shivakumar SVBY, Mave V, Thomas B, Bharadwaj R, Gaikwad S, Meshram S, Lokhande R, Kinikar A, Daware R, Murali L, Swaminathan S, Gupta A for C-TRIUMPh Study Team. Risk Factors Associated with Unfavorable Outcomes in a Cohort of Pulmonary TB Patients. Presented at the 5th Global Forum on TB Vaccines; February 20-23, 2018; New Delhi, India.
- Paradkar M, Dhanasekaran K, Kinikar A, Kulkarni R, Bharadwaj R, Gaikwad S, Lokhande R, Meshram S, Dolla CK, Selvaraju S, Murali L, Thiruvengadam K, Jain D, Rajagopal S, Kulkarni V, Pradhan N, Shalini J, Kohli R, Nayagam R, Shivakumar SVBY, Suryavanshi N, Gupte A, Gupte N, Chandrasekaran P, Mave V, Gupta A for the CTRIUMPh Study Team. Incidence of Mycobacterium tuberculosis Infection among Household Contacts of Adult

- **Pulmonary Tuberculosis Cases in India.** Abstract Presented at the 5thGlobal Forum on TB Vaccines; February 20-23, 2018; New Delhi, India.
- Selvaraju S, Thiruvenkadam K, Paradkar M, Marinaik SB, Bharadwaj R, Rajagopalan S, Gaikwad S, Pattabiraman S, Kinikar A, Sivaramakrishnan GN, Meshram S, Hanna LE, Lokhande R, Dhanasekaran K, Gupte A, John S, Gupte N, Thomas B, Kukarni V, Ayyanu S, Kohli R, Shivakumar SVBY, Swaminathan S, Mave V, Gupta A, Chandrasekaran for the CTRIUMPh Study Team. Incidence of Tuberculosis Disease among the Household Contacts of Adult Pulmonary TB Patients in India—A Multicentric Cohort Study. Accepted for poster presentation at: 5th Global Forum on TB Vaccines; February 20-23, 2018; New Delhi, India.
- Mave V, Chandrasekaran P, Paradkar M, Gupte A, Pradhan N, Sivaramakrishnan GN, Thiruvenkadam K,Shivakumar SVBY, Kulkarni V, Dhanasekaran K,Subramanyam B, Selvaraju S, Murali L, Bharadwaj R, Gaikwad S, Meshram S, Kinikar A, Hanna LE, Swaminathan S, Gupte N, Gupta A. Infection Free "Resistors" among Household Contacts of Culture-Confirmed Adult Pulmonary TB Cases. Accepted for poster presentation at: 5th Global Forum on TB Vaccines; February 20-23, 2018; New Delhi, India.
- Tornheim JA, Paradkar M, Valvi C, Gupte N, Madugundu A, Kulkarni V, Sreenivasamurthy S, Raja R, Pradhan N, Shivakumar SVBY, Kohli R, Gupte A, Chandrasekaran P, Mave V, Pandey A, Gupta A. Gene Expression Profiles of Pediatric Tuberculosis Patients and Exposed Controls from India. Accepted for oral presentation at: 5th Global Forum on TB Vaccines; February 20-23, 2018; New Delhi, India.
- Gupte A. Interleukin-6, Interleukin-13 and Interferon-γ as Potential Biomarkers for Treatment Failure in Pulmonary Tuberculosis. Abstract Presented at the RePORT India meeting, February, 2018; New Delhi, India.
- Dhamal G. Poor Understanding of TB Infection among At-risk Tuberculin Skin-test Positive
 Household Contacts of Pulmonary TB Cases in Pune, India. Abstract Presented at the 5thGlobal Forum on
 TB Vaccines; February 20-23, 2018; New Delhi, India.
- Mathad J, Alexander A, Bhosale R, Naik S, Suryavanshi N, Mave V, Deshpande P, Balasubramanian U, Kulkarni V, Kumar P, Babu S, Gupte N, Nevrekar N, Patil S, Chandanwale A, Gupta A. The Effect of HIV on the Immune Response to Myobacterium Tuberculosis in Pregnant Women from Pune, India. Abstract Presented at the 5th Global Forum on TB Vaccines; February 20-23, 2018; New Delhi, India.
- Tornheim JA, Madugundu AK, Pradhan N, Bharadwaj R, Mave V, Goloub J, Pandey A, Gupta A. Drug
 Susceptibility of Rifampin-resistant Tuberculosis using Whole Genome Sequencing to Identify
 Genes of Interest in Pune, India. Abstract Presented at the 5th Global Forum on TB Vaccines; February 20-23,
 2018: New Delhi, India.
- Belgaumkar, V. Barriers to Contact Screening and Isoniazid Preventive Therapy among Pediatric Contacts of Adults with Smear-Positive Tuberculosis. Presented at: 48th Union World Conference on Lung Health; October 13, 2017; Guadalajara, Mexico.
- DeLuca A, Dhumal G, Paradkar M, Suryavanshi N, Mave V, Kohli R, Shivakumar SVBY, Gupta A. Lack of TB
 Knowledge among TST-positive Household Contacts of Pulmonary Cases: A Missed Opportunity.
 Presented at: 48th Union World Conference on Lung Health, October 13, 2017; Guadalajara, Mexico.
- Tornheim J, Paradkar M, Valvi C, Gupte N, Madugundu A, Kulkarni V, Sreenivasamurthy S, Raja R, Pradhan N, Shivakumar SVBY, Kohli R, Chandrasekaran P, Pandey A, Mave V, Gupta A. **Gene Expression Profiles of Pediatric Tuberculosis Patients and Exposed Controls from India.** Presented at: RePORT International Meeting; September 13; 2017; Rio de Janeiro, Brazil.
- Gupte A, Mave V, Meshram S, Lokhande R, Kadam D, Dharmshale S, Bharadwaj R, Kagal A, Pradhan N, Deshmukh S, Atre S, Sahasrabudhe T, Barthwal M, Meshram S, Kakrani A, Kulkarni V, Raskar S, Suryavanshi N, Shivakoti R, Chon S, Selvin E, Gupte N, Gupta A, Golub J. Trends in Glycated Hemoglobin Levels and Implications for Diabetes Screening among Pulmonary Tuberculosis Cases Undergoing Treatment in India. Presented at: RePORT International Meeting; September 13; 2017; Rio de Janeiro, Brazil.
- Shivakumar SVBY, Chandrasekaran P, Paradkar M, Danasekaran K, Kumar AMV, Ramachandran G, Thomas B, Suryavarshini N, Kohli R, Thiruvengadam K, Gupte N, Kulkarni V, Hannah LE, Gomathy NS, Pradhan N, Dolla CK, Gupte A, DeLuca A, Meshram S, Kagal AD, Golub J, Selvaraj K, Murali L, Swaminathan S, Mave V, Gupta A. High Burden of Dysglycemia among Contacts of Tuberculosis Patients in India: Is it Time to Screen Them All? Presented at: RePORT International Meeting September 13, 2017; Rio de Janeiro, Brazil.

- Tornheim J. Paradkar M. CTRIUMPh Pediatric Biomarker Substudy. Session: The Future of MDR-TB
 Treatment in Children. Invited Presentation. 2017 IMPAACT Annual Meeting; May 30, 2017; Washington, DC,
 USA.
- Mathad J, Alexander M, Bhosale R, Naik S, Shivakoti R, Mave V, Suryavanshi N, Gupte N, Kulkarni V, Pradan N, Patil N, Gupta A. Impact of Immune Changes of Pregnancy and HIV Infection on Tuberculosis. Poster Presentation. 6th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership Meeting; February 3, 2017; Hyderabad, India.
- Gupte A, Meshram S,Selvaraju S, Gupte N, Shivakumar SVBY, Paradkar M, Kohli R, Thiruvengadam K, Suryavanshi N, Chandrasekaran P, Mave V, Swaminathan S, Gupta A, Golub J, Checkley W. Host Factors Associated with Poor Respiratory Health-related Quality of Life in Pulmonary Tuberculosis. Presented at: RePORT India Annual Meeting; February 3, 2017; Hyderabad, India.
- Chandrasekaran P, Thiruvengadam K, Gupte N, Luck EH, Mave V, Gupte A, Gupta A, Swaminathan S. Household
 Contact Tracing of Adult Pulmonary TB Patients in India: Prevalence of TB Disease and Infection.
 Presented at: 6th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint
 Leadership Meeting; February 3, 2017. Hyderabad, India.
- Paradkar M, Kavitha D, Shiva Kumar SVBY, Khadse S, Khwaja S, Hari K, Rani N, Thiruvengadam K, Gupte N, Raskar S, Jain D, Suryavanshi S, Kohli R, Kulkarni V, Pradhan N, Sathyamurthi B, Tornheim J, Gupte A, DeLuca A, Mave V, Chandrasekaran P, Gupta A for the CTRIUMPH Study Team. Descriptive Baseline Characteristics, Treatment Outcomes and Biorepository of Pediatric TB Cases in CTRIUMPh-RePORT India Prospective Cohort. Presented at: 6th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership Meeting; February 3, 2017. Hyderabad, India.
- John S, DeLuca A, Paradkar M, Nayagam R, Shivakumar SVBY, Gupte A, Gupte N, Thomas B, Suryavanshi N, Kolhi R, Golub J, Kulkarni V, Pradhan N, Mave V, Chandrasekaran P, Gupta A. Alcohol Use Among Adult Pulmonary and Extra-pulmonary TB Cases in the CTRIUMPH India Cohort. Presented at: 6th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership Meeting; February 3, 2017. Hyderabad, India.
- Mave V, Pradhan R, Kagal A, Bharadwaj R, Gupte N, Gupta A, Meshram S, Golub J. **Third Anti-TB Drug in Continuation Phase for TB patients: Is It the Need of the Hour for India?** Presented at: 47th Union World Conference on Lung Health; October 27, 2016; Liverpool, UK.
- Mave V, Gupte N, Meshram S, Kagal A, Gupta A, Bharadwaj R, Pradhan R, Golub J. Xpert® MTB/RIF Assay for Pulmonary Tuberculosis Diagnosis in Patients with Pre-Diabetes Mellitus and Diabetes Mellitus.
 Presented at: 47th Union World Conference on Lung Health; October 27, 2016; Liverpool, UK.
- Gupte A, Meshram S,Selvaraju S, Gupte N, Shivakumar SVBY, Paradkar M, Kohli R, Thiruvengadam K, Suryavanshi N, Chandrasekaran P, Mave V, Swaminathan S, Gupta A, Golub J, Checkley W. Host Factors Associated with Poor Respiratory Health-related Quality of Life in Pulmonary Tuberculosis. Presented at: 2016 IDSA Conference; October 27, 2016; New Orleans, LA, USA.
- Chandrasekaran P, Mave V, Tiruvengadam K, Gupte N, Hannah LE, Meshram S, Swaminathan S, Gupta A.
 Household Contact Tracing of Adult Pulmonary TB Patients in India: Prevalence of TB Disease.
 Presented at: 2016 IDSA Conference; October 27, 2016; New Orleans, LA, USA.
- Shivakumar SVBY, Thiruvengadam K, Gupte N, Chandrasekaran P, Mave V, Hannah LE, Kulkarni V, Gupte A, DeLuca A, Pattabiraman S, Sharma GN, Pradhan N, Subramaniyan B, Chandrakumar D, Thomas B, Suryavanshi B, Paradkar M, Meshram S, Kagal A, Kohli R, Golub J, Ramachandran G, Swaminathan S, Gupta A. TB Infection Prevalence, Incidence and Risk Factors among Child and Adult Household Contacts of Adult TB Cases in India. Presented at: 2016 IDSA Conference; October 27, 2016; New Orleans, LA, USA
- Elf JL, Kinikar A, Khadse S, Mave V, Gupte N, Kulkarni V, Patekar S, Raichur P, Breysse P, Gupta A, Golub J. The
 Association of Exposure to Air Pollution from Biomass Fuels, Kerosene, and Secondhand Tobacco
 Smoke with TB in Adult Women and Children in Pune, India. Presented at: RePORT International; July
 14, 2016; Durban, South Africa.
- Gupte A, Meshram S,Selvaraju S, Gupte N, Shivakumar SVBY, Paradkar M, Kohli R, Thiruvengadam K, Suryavanshi N, Chandrasekaran P, Mave V, Swaminathan S, Gupta A, Golub J, Checkley W. Host Factors Associated with Poor Respiratory Health-related Quality of Life in Pulmonary Tuberculosis. Presented at: RePORT International; July 14, 2016; Durban, South Africa.

- Ogale YP, Elf JL, Lokhande R, Mave V, Roy S, Gupta A, Golub JE, Mathad J. Characteristics Associated with Mobile Phone Access Among TB Patients in Pune, India. Poster presented at: 46th World Conference on Lung Health of the International Union Against TB and Lung Disease; December 1-5, 2015; Cape Town, South Africa.
- Elf JL, Kinikar A, Khadse S, Mave V, Gupte N, Kulkarni V, Patekar S, Raichur P, Breysse P, Gupta A, Golub J. The
 Association of Exposure to Air Pollution from Biomass Fuels, Kerosene, and Secondhand Tobacco
 Smoke with TB in Adult Women and Children in Pune, India. Presented at: American Thoracic Society
 International Conference; May 1, 2015; Denver, CO, USA.

Christian Medical College, Vellore (CMC-Vellore)/University of Cambridge-University of Washington

LECTURES

- Christopher DJ. Is India's Endeavor to End TB by 2025 Achievable? Presented at: 36th AP Tuberculosis & Chest Diseases Conference. 10-11 November 2018, Madanapally, Andhra Pradesh, India.
- Christopher DJ. Addressing Diagnostic Challenges for TB Meningitis—From Clinical Staging to Pet Scanning. Presented at: The 49th Union World Conference on Lung Health. 24-27 October 2018, The Hague, The Netherlands.
- Christopher DJ. Is India's Endeavor to End TB by 2025 Achievable? How can RePORT Align with This? Presented at: RePORT 4th Annual International meeting. 12-14th September 2018, Suzhou, China.
- Christopher DJ. Determination of Efficacy of expert PCR Ultra and Transcriptional Signatures in the Diagnosis of Pleural Tuberculosis. Presented at: RePORT 4th Annual International meeting. 12-14th September 2018, Suzhou, China.
- Christopher DJ. Health Care Personnel TB—Fact of Life in High Burden Countries. Presented at: RePORT 4th Annual International meeting. 12-14th September 2018, Suzhou, China.
- Christopher DJ. Point of Care Diagnostics & Need for Triage Test in a High Prevalence Setting. Presented
 at: Understanding the Resources and gaps in DIADS funded TB Research Investigators Meeting. July 2-3, 2018; NIAID
 Conference Center; Rockville MD, US.
- Christopher DJ. **Battling the White Plague (TB) in Our Campuses.** Presented at: The Quality Circle, Christian Medical College. 14th April 2018, Vellore, India.
- Christopher DJ. **State of TB Control in India.** Presented at: RePORT India 7th Annual Joint Leadership Meeting: Catalyzing Discoveries toward TB Elimination. February 15, 2018; Delhi, India.
- Christopher DJ. Prevalence of Latent TB Infection (LTBI) among Undergraduate Nursing Trainees in a Rural Secondary Care Hospital in Southern India. Presented at: RePORT India 7th Annual Joint Leadership Meeting. Catalyzing Discoveries toward TB Elimination. February 15, 2018; Delhi, India.
- Christopher DJ. Targeted LTBI Testing. Presented at: LTBI Knowledge Seminar. January 11, 2018; Hyderabad, India.
- Christopher DJ. LTBI Screening in High TB Prevalence Setting. Presented at: Qiagen Knowledge Seminar.
 November 2, 2017; Bangalore, India.
- Christopher DJ. LTBI Screening: A Clinician's Perspective. Presented at: CME organized by Qiagen. April 5, 2017; New Delhi, India.
- Christopher DJ. LTBI: To Screen or Not to Screen. Presented at The Three T's of TB Prevention: Test, Treat and Track Symposium. Asia Pacific Regional Conference; International Union against Tuberculosis. March 23, 2017; Tokyo, Japan.
- Christopher DJ. Advances in the Management of Drug Resistant TB. Presented at: TB Symposium. Convened by Krishna Medical College in collaboration with McGill University (Canada). December 21, 2016; Manipal, India.

- Christopher DJ. **Healthcare Worker TB: A Panel Discussion.** Presented at: TB Symposium. Convened by Krishna Medical College in collaboration with McGill University (Canada). December 21, 2016; Manipal, India.
- Christopher DJ. **Evolution of Drug Resistant TB in India.** Presented at: Annual Update in Tuberculosis. Convened by CMC Vellore. November 19, 2016; Vellore, India.
- Christopher DJ. Screening for LTBI in Healthcare Personnel to Assess TB Risk—Lessons from India.
 Presented at: 5th Meeting of Asian Experts Community. August 26-28, 2016; Taipei, Taiwan.
- Christopher DJ. **TB Risk in Health Care Workers: Myth or Reality?** Presented at: RePORT International Meeting, July 14-15, 2016; Durban, South Africa.
- Christopher DJ. From Lab to Clinic: Optimizing the Importance of New Diagnostics. Presented at: Advancing
 TB Research—An Exploration of Opportunities. Convened by PD Hinduja Hospital and NIH (USA). March 23-24,
 2016; Mumbai, India.
- Christopher DJ. Lessons from Healthcare—TB Research in India. Presented at: CMC Winter Symposium and the 5th RePORT Leadership Group Meeting. February 12-13, 2016; Vellore, India.
- Christopher DJ. Pleural Tuberculosis. Presented at: Association of Physicians of India Meeting. January 29-31, 2016;
 Hyderabad, India.
- Christopher DJ. **TB in Healthcare Workers.** Presented at: National Update in Respiratory Medicine. Convened by PD Hinduja Hospital. November 27-29, 2015; Mumbai, India.
- Christopher DJ. **Road for TB Elimination in India.** Presented at: 4th Meeting of Asian Experts Community. August 7-9, 2015; Bali, Indonesia.
- Christopher DJ. **Newer Diagnostics in TB.** Presented at: Institute of Thoracic Medicine, MMC, CME Program for the PG Students of Southern States. September 2014; Chennai, India.
- Christopher DJ. Relevance of TST and IGRA in Current Day Practice. Presented at: ASHRAICON Conference 2014. July 27, 2014; Ahmedabad, India.

PRESENTATIONS/ABSTRACTS

- Christopher DJ, Thangakunam B, Shankar D, Samuvel S, Oliver A, Deepak A. Empirical Treatment of Smear Negative 'SUPPOSEDLY' Pulmonary Tuberculosis Patients—Is It Right? Presented at: RePORT 7th Annual Joint Leadership Meeting. February 15-17, 2018; Delhi, India.
- Christopher DJ, Thangakunam B, Samuvel S, Deepak A, Shankar D, Mathuram A, David T, Sathyendra S, Abraham OC, Ramya I, Ramakrishnan L. Comparison of Profile of Indian Patients with Tubercular Meningitis in the CMC, Vellore, Cohort with Other Cohorts. Presented at: RePORT 7th Annual Joint Leadership Meeting. February 15-17, 2018; Delhi, India.
- Christopher DJ, Shankar D, Micheal JS, Thangakunam B, Ramakrishnan L. Factors Affecting Time to Sputum Smear and Culture Conversion in Adults with Pulmonary Tuberculosis: A Prospective Cohort Study from CMC RePORT Data. Presented at: RePORT 7th Annual Joint Leadership Meeting. February 15-17, 2018; Delhi, India.
- Christopher DJ Dinakaran S, Gupta R, Prince J, Isaac B, Thangakunam B. Large Thoracoscopic Pleural Biopsy Improves Yield of Xpert MTB/RIF for Diagnosis of Pleural Tuberculosis. Presented at: BRONCOCON; CMC Vellore. March 2-4, 2017; CMC, Vellore, India.
- Christopher DJ, Balamugesh T, Dhabi P. The Prevalence of Active and Latent Tuberculosis Infection in Patients with Type 2 Diabetes Mellitus in a Tertiary Care Hospital of South India. Presented at: Winter Symposium RePORT Leadership Group Meeting. February 12-14, 2016; Vellore, India.
- Christopher DJ, Balamugesh T, Rohit KO, James P, Gupta R. Diagnostic Yield of Various Microbiologic and Histopathologic Tests in TB Pleural Effusion Diagnosed with Thoracoscopy and Outcomes of Such Patients on 6 Months Follow Up. Presented at: Winter Symposium RePORT Leadership Group Meeting. February 12-14, 2016; Vellore, India.

- Christopher DJ, Mitra S, Saroini JS, Balaji V, Gupta M, Therese M, Yadav B, Jeyaseelan L. Burden of Diabetes
 Among Patients with Tuberculosis: Ten-Year Experience from an Indian Tertiary Care Teaching
 Hospital. Presented at: 45 Annual Union World Conference on Lung Health. October 28-Nov 1, 2014; Barcelona,
 Spain.
- Christopher DJ, Denkinger C, Thangakunam B, Sarojini JS, Pai M, Schumacher S. Point-of-Care Implementation of Xpert: Evaluating the Impact of Product and Process Innovation in TB Diagnosis. Presented at: 45 Annual Union World Conference on Lung Health. October 28–Nov 1, 2014; Barcelona, Spain.

Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER)/ Boston Medical Center (BMC)

LECTURES

- Hochberg, NS. Indo-US TB Cohort: Study Design and Preliminary Results. Presented at: TB Research Unit (TBRU) Investigators Meeting. September 2017; Boston, MA, USA.
- Hochberg, NS. Updates in Tuberculosis: The Era of Sea Changes. Medicine Grand Rounds. Presented at: Carney Hospital. March 2017.
- Hochberg, NS. Indo-US TB Cohort: Study Design and Preliminary Results. Invited speaker, JIPMER. February 8, 2017; Puducherry, India.
- Hochberg, NS. Malnutrition and TB in India: Intersection and Implications. Presented at: Northeastern World
 TB Day Symposium.
- Hochberg, NS. Tuberculosis: The Fundamentals and the Sea Changes. Presented at: MPH Course: Global Health Priorities & Approaches. Tufts University School of Medicine. Boston, MA, USA.

PRESENTATIONS/ABSTRACTS

- Chua A, Mowry WB, Sahu S, Roy G, Ellner JJ, Horsburgh Jr CR, Pleskunas J, Sarkar S, Hochberg NS, Reddy D. Does
 the Form of Tobacco Product Used by Smokers Influence Pulmonary Tuberculosis Severity? Presented
 at: ATS 2018. May 18-23, 2018; San Diego, CA, USA.
- Schenk NM, Sahu S, Roy G, Ellner JJ, Horsburgh Jr CR, Pleskunas J, Sarkar S, Hochberg NS, Reddy D. Influence of Type of Tobacco Product on Chest X-ray findings in Pulmonary Tuberculosis Patients in India. Presented at: RePORT India 7th Annual Joint Leadership Meeting: Catalyzing Discoveries toward TB Elimination; February 15, 2018; Delhi, India.
- Hoyt K, White L, Sarkar S, Pleskunas J, Zhou T, Noyal J, Muthuraj M, Vinod K, Roy G, Ellner JJ, Horsburgh Jr CR, Hochberg NS. Effect of Malnutrition on Tuberculosis Mycobacterial Burden and Chest Radiographic Findings. Presented at: RePORT India 7th Annual Joint Leadership Meeting: Catalyzing Discoveries toward TB Elimination. February 15, 2018; Delhi, India.
- Reddy D. Wood Fuel Usage Is Associated with a Higher Leukocyte Count in Pulmonary Tuberculosis
 Patients. Presented at: RePORT India 7th Annual Joint Leadership Meeting: Catalyzing Discoveries toward TB
 Elimination. February 15, 2018; Delhi, India.
- Forsyth M. Alcohol Use and Clinical Presentation of Tuberculosis at Time of Diagnosis in Puducherry and Tamil Nadu, India. Presented at: RePORT India 7th Annual Joint Leadership Meeting: Catalyzing Discoveries toward TB Elimination. February 15, 2018; Delhi, India.
- Svadzian A, Sahu A, Pleskunas JA, Sarkar S, Roy G, Ellner JJ, Hochberg NS, Reddy D. Association between Wood Fuel Usage and Disease Severity among Pulmonary Tuberculosis Cases. Poster presented at: American Society of Tropical Medicine & Hygiene Meeting. November 2016; Atlanta, GA, USA.
- Stigma as a Barrier to Tuberculosis Care: A Literature Review. Poster presented at: Evans Department of Medicine Research Days, Boston University School of Medicine. October 2016; Boston, MA, USA.

- Roy G, Sivaprakasam A, Kubiak R, Govindarajan S, Salgame P, Ellner J, Hochberg N, Sarkar S. Description of New Pulmonary Tuberculosis Cases in Southern India. Poster presented at: Evans Department of Medicine Research Days, Boston University School of Medicine. October 2016; Boston, MA, USA.
- Svadzian A, Sahu A, Pleskunas JA, Sarkar S, Roy G, Ellner JJ, Hochberg NS, Reddy D. Association between Wood Fuel Usage and Disease Severity among Pulmonary Tuberculosis Cases. Poster presented at: Evans Department of Medicine Research Days, Boston University School of Medicine. October 2016; Boston, MA, USA.
- Conversion among Pulmonary Tuberculosis Cases in India. Poster presented at: Evans Department of Medicine Research Days, Boston University School of Medicine. October 2016; Boston, MA, USA.
- Predictors of 2 Month Sputum Conversion among Tuberculosis Patients in India. Poster presented at: Evans Department of Medicine Research Days, Boston University School of Medicine. October 2016; Boston, MA, USA.
- Prolonged Cough among Tuberculosis Patients In Tamil Nadu and Pondicherry, India. Poster presented at: Evans Department of Medicine Research Days, Boston University School of Medicine. October 2016; Boston, MA, USA.
- Reddy D, Sahu S, Roy G, Ellner JJ, Horsburgh Jr CR, Pleskunas JA, Sarkar S, Hochberg NS. Association between
 Biomass Fuel, Tobacco Use and Two-month Sputum Smear Conversion among Pulmonary
 Tuberculosis Cases in India. Poster presented at: American Thoracic Society Conference. May 2016; San Francisco,
 CA, USA.
- Roy G, Sivaprakasam A, Kubiak R, Govindarajan S, Salgame P, Ellner J, Hochberg N, Sarkar S. Description of New Pulmonary Tuberculosis Cases in Southern India. Poster presented at: 46th Union World Conference on Lung Health of the International Union Against TB and Lung Disease. December 1-5, 2015; Cape Town, South Africa.
- Sarkar S, Fernandes P, Lakshminarayanan S, Kubiak R, Horsburgh CR, Ravikumar T, Ellner J, Hochberg N. Age and Gender Distribution of Latent Tuberculosis Infection Cases in a Household Contact Study, India. Poster presented at: 46th Union World Conference on Lung Health of the International Union Against TB and Lung Disease. December 1-5, 2015; Cape Town, South Africa.
- Reddy, D, Sahu S, McIntosh A, Kubiak R, Roy G, Ellner J, Sarkar S, Hochberg N. Association Between Latent
 Tuberculosis Infection and Indoor Air Pollution among Household Contacts of Pulmonary Tuberculosis
 Cases. Poster presented at: 46th Union World Conference on Lung Health of the International Union Against TB and
 Lung Disease. December 1-5, 2015; Cape Town, South Africa.

MV Diabetes Research Centre (MVDRC)/University of Massachusetts

LECTURES

- Kornfeld H. Sugar, Fat and Consumption. Invited seminar: Boston University School of Medicine. January 16, 2016; Boston, MA, USA.
- Kornfeld H. Tuberculosis: The Rise of Comorbidities. Medical Grand Rounds, University of Massachusetts Medical School. June 4, 2015; Worcester, MA, USA.
- Kornfeld H. TB and Diabetes. Invited seminar: Singapore Immunology Network. February 27, 2015; Singapore.
- Kornfeld H. **TB and Diabetes**. Keystone Symposium on Granulomas in Infectious and Non-Infectious Disease. January 22-27, 2015; Santa Fe, NM, USA.
- Kornfeld H. The Effects of Diabetes on TB Susceptibility. Invited seminar: No.4 People's Hospital of Nanning, January 12, 2015; Nanning, China.
- Kornfeld H. **Sugar, Fat, and Consumption**. Invited seminar: University of Texas, Health Science Center at Tyler. August 22, 2014; Tyler, TX, USA.
- Kornfeld H. **Determinants of TB Severity**. Invited seminar: Shenzhen-Hong Kong Institute of Infectious Diseases. Shenzhen, China.

PRESENTATIONS/ABSTRACTS

- Kumar NP, Moideen K, Sivakumar S, Menon P, Viswanathan V, Kornfeld H, Babu S. Effect of Standard Tuberculosis
 Treatment on Circulating Levels of Pro-inflammatory Cytokines in Tuberculosis-diabetes Co-morbidity.
 Accepted for poster presentation at: Keystone Symposia -Tuberculosis: Translating Scientific Findings for Clinical and
 Public Health Impact. April 15-19, 2018; Whistler, BC, Canada.
- Kumar NP, Moideen K, Sivakumar S, Menon P, Viswanathan V, Kornfeld H, Babu S. Effect of Anti-tuberculosis
 Treatment on the Systemic Levels of Matrix Metalloproteinases and Tissue Inhibitors of MMP in
 Tuberculosis—Diabetes Co-morbidity. Accepted for poster presentation at: 5th Global Forum on TB Vaccines.
 February 20-23, 2018; New Delhi, India.
- Moideen K, Kumar NP, Bethunaickan R, Sivakumar S, Menon PA, Viswanathan V, Shruthi BS, Kornfeld H, Babu S.
 Altered Systemic Levels of Neutrophil and Mast Cell Granular Proteins in Tuberculosis-Diabetes Co-morbidity and
 Changes Following Treatment. Accepted for poster presentation at: 5th Global Forum on TB Vaccines; February 20-23,
 2018: New Delhi, India.
- Moideen K. Effect of Anti-tuberculosis Treatment on the Systemic Levels of Tissue Inhibitors of Metalloproteinases in Tuberculosis-Diabetes Co-morbidity. Presented at: RePORT India 7th Annual Joint Leadership Meeting: Catalyzing Discoveries toward TB Elimination; February 15, 2018; Delhi, India.
- Kumar P. Effect of Standard Tuberculosis Treatment on Circulating Levels of Monocyte Activation
 Markers and RAGE Ligands in Tuberculosis-Diabetes Co-morbidity. Presented at: RePORT India 7th Annual Joint Leadership Meeting: Catalyzing Discoveries toward TB Elimination. February 15, 2018; Delhi, India.
- Shruthi BS. Impact of Metformin Use on TB Severity in Diabetes. Presented at: RePORT India 7th Annual Joint Leadership Meeting: Catalyzing Discoveries toward TB Elimination. February 15, 2018; Delhi, India.

PD Hinduja Hospital/Johns Hopkins University (JHU)

PRESENTATIONS/ABSTRACTS

- Chawla PK, Lokhande RV, Naik PR, Dherai AJ, Udwadia ZF, Mahashur AA, Pinto L, Soman R, Rodrigues C, Gupta A, Tornheim JA, Martinson N, Variava E, Weisner L, Joubert A, Ashavaid TF. Determination of Plasma Clofazimine Levels by Liquid Chromatography-Mass Spectrometry. 8th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership meeting—Biomarkers and Beyond. February 4-6, 2019, Chennai, India.
- Chawla PK, Lokhande RV, Naik PR, Dherai AJ, Udwadia ZF, Mahashur AA, Pinto L, Soman R, Rodrigues C, Gupta A,
 Tornheim JA, Ashavaid TF. Determination of Serum Linezolid levels by HPLC. 8th Annual Regional Prospective
 Observational Research for Tuberculosis (RePORT) India Joint Leadership meeting—Biomarkers and Beyond. February
 4-6, 2019, Chennai, India.
- Tornheim JA, Udwadia ZF, Porwal S, Kishore G, Gajjar I, Karane M, Shivakumar SVBY, Rodrigues C, Gupta A. Impact
 of Standard or Increased Moxifloxacin Dose Among MDR-TB Patients in Mumbai with Low-Level
 Resistance. 8th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint
 Leadership meeting—Biomarkers and Beyond. February 4-6, 2019, Chennai, India.
- Gajjar IN, Tornheim JA, Udwadia ZF, Kishore G, Karane M, Sayed S, Chawla P, Rodrigues C, Ashavaid T, Shivakumar SVBY, Gupta A. Quality of Life Among MDR-TB Patients from the Public Sector in Mumbai. 8th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership meeting—Biomarkers and Beyond. February 4-6, 2019, Chennai, India.
- Shivakumar SVBY, Tornheim JA, Gajjar I, Porwal S, Kishore G, Karane M, Chawla P, Rodrigues C, Ashavaid T, Gupta A, Udwadia ZF. Mental Health and TB: High prevalence of depression among drug-resistant TB patients not associated with cycloserine. 8th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership meeting—Biomarkers and Beyond. February 4-6, 2019, Chennai, India.
- Kambli P, Tornheim JA, Soundararajan L, Priyadarshini S, Gupta R, Ramprasad VL, Gupta A, Rodrigues C. Whole Genome sequencing of Mycobacterium tuberculosis directly from clinical samples accurately identifies

- drug resistance. 8th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership meeting—Biomarkers and Beyond. February 4-6, 2019, Chennai, India.
- Ajbani K, Kazi M, Naik S, Soman R, Shetty A, Rodrigues C. Simultaneous rapid detection of tubercular meningitis and drug susceptibility testing using pyrosequencing on uncultured cerebrospinal fluid samples. 8th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership meeting—Biomarkers and Beyond. February 4-6, 2019, Chennai, India.
- Nambiar R, Tornheim JA, Diricks M, Katrien DB, Sadani M, Shetty A, Rodrigues C. Linezolid resistance in Mycobacterium tuberculosis isolates at a tertiary care center in Mumbai, India, by whole genome sequencing. 8th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership meeting—Biomarkers and Beyond. February 4-6, 2019, Chennai, India.
- Tornheim J, Ganatra S, Deluca A, Banka R, Rodrigues C, Gupta A, Udwadia Z. Linezolid Experience among MDRTB Patients in Mumbai. Presented at: RePORT India 7th Annual Joint Leadership Meeting: Catalyzing Discoveries toward TB Elimination. February 15, 2018; Delhi, India.
- Chawla PK, Lokhande RV, Naik PR, Dherai AJ, Udwadia ZF, Mahashur AA, Soman R, Patel J, Ashavaid TF.
 Therapeutic Drug Monitoring of Rifampicin & Isoniazid and Implications of Acetylator Genotype on Plasma Levels. Presented at: 15thInternational Congress on Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). September 27, 2017; Kyoto, Japan.
- Tornheim J, DeLuca A, Ganatra S, Radhika B, Gupta A, Udwadia Z. It Simply Won't Work Here Few Eligible for the Newly Recommended Short Course MDR-TB Regimen in a Mumbai Private Clinic. Presented at: American Thoracic Society 2017 International Conference. May 21, 2017; Washington, DC, USA.
- Tornheim JA, Ganatra S, DeLuca A, Banka R, Gupta A, Udwadia ZF. Impact of Drug Susceptibility Testing on Drug Choice in a Tuberculosis Cohort with High Rates of Drug Resistance from the Private Sector in Mumbai. Presented at: 6th Annual Regional Prospective Observational Research for Tuberculosis (RePORT) India Joint Leadership Meeting. February 3, 2017. Hyderabad, India.
- Udwadia ZF, Tornheim JA, Ganatra S, DeLuca A, Banka R, Gupta A. Impact of Drug Susceptibility Testing on Drug Choice in a Tuberculosis Cohort with High Rates of Drug Resistance from the Private Sector in Mumbai. Presented at: 2016 IDSA Conference. October 27, 2016; New Orleans, LA, USA.
- Chawla PK, Lokhande RV, Naik PR, Dherai AJ, Udwadia ZF, Rodrigues CR, Mahashur AA, Soman R, Patel J, Ashavaid TF. Implication of Acetylator Genotype of Plasma Rifampcin and Isoniazid. Oral Presentation at: 31st Annual Research Day meeting. March 3, 2018. (Awarded 1st Prize for Best Laboratory paper)
- Chawla PK, Lokhande RV, Naik PR, Singh S, Dherai AJ, Udwadia ZF, Pinto L, Soman R, Rodrigues C, Patel J, Ashavaid TF. Implications of Acetylator Genotype on Plasma Rifampicin and Isoniazid Levels in TB Patients.
 Poster presentation at 45th National Conference of Association of Clinical Biochemists of India (ACBICON 2018). 25-27th October 2018; Goa, India.

Grants& Substudies

RePORT India

8TH ANNUAL JOINT LEADERSHIP MEETING BIOMARKERS & BEYOND CHENNAI | 4-6 FEB 2019 This page is intentionally blank

RePORT INTERNATIONAL SUPPLEMENTAL FUNDED PROJECTS | AWARDED CRDF **CRDF** Partners & Start Progress/ Title **Investigators Updates IRB Status** # Date **Challenges** (Feb 2018) Validation of **RePORT RICC** 2017 Mave V, Rolla 24 patients BIMC award Transcriptional V, Salgame P, enrolled (15 active October Brazil Kadam D, HIV only and 9 10. Fiocruz Signature to Approved: Predict Active BMC, HIV-TB) and pending IRB Andrade B, TB Disease BJGMC, ongoing at Gupta A, approval. BJMC JHU Meshram S. among Advanced HIV Kulkarni V, **Patients** Ellner | PO's in place 2. Molecular Approved: RICC 2017 Kornfeld H, P **MSTDI** Signatures of JHU, UMass, Chandrasekaran **Transcriptomics** with both Tuberculosis-BJGMC, , Gupte A, Mave - Sample testing Medgenome Diabetes NIRT, V, Bharadwaj R, at Medgenome and UC Davis MVDRC Interaction Golub J, complete and vendors. (MSTDI) study Andrade B, results are **BIGMC** Paradkar M, being analysed. agreement Luke H. signed. Fully MSTDI -Kulkarni V, executed Gupte N, Metabalomics: agreement to Shivakumar Sample be sent back SVBY, Gupta A shipment to week of UCD is on hold 2/5/18. awaiting DBT Pending review approval for and signature BIMC & sample by NIRT, and shipment for MVDRC to be NIRT is in sent back to CRDF. progress. Biomarkers for 3. Approved: 23737 2016 Rengarajan J, Two batches of **Emory Active** TB Diagnosis BJGMC, Hanna LE, Mave Sample July 17, Jipmer NIRT, and Treatment shipment from active Aug BJMC to US Response Emory, JHU Chandrasekaran 17th: complete. 3rd Collecting Thiruvengadam Shipment from receipts. K, Toidi A, NIRT is in reimbursemen process. Data Gupte N. t upon Kulkarni V, generation in submission Gupta A and process. CTRIUMPH team

RePORT INTERNATIONAL SUPPLEMENTAL FUNDED PROJECTS | AWARDED **CRDF** Partners & **CRDF** Progress/ **Start** Title **Investigators Updates** Challenges **IRB Status** # **Date** (Feb 2018) Impact of HIV Approved: 23738 2016 Mave V, Devi WGS for 79 **IHU** active BIGMC, and Diabetes pairs of MTB August 17, Mellitus on TB NIRT, JHU, Chandrasekaran isolates NIRT active MVDRC. Drug P, Mathema B, complete at August 24, BIMC active UMass. Vishwanathan V, Resistance and Medgenome. Data review, October 17: Recurrence Rutgers Kornfeld H, Kreiswirth B, variables Collecting Golub J, Gupte finalization and receipts, N, Shivakumar reimbursemen data analysis yet SVBY, Gupta A to begin. t upon submission 5. Host RNA NIRT, DAA3-2018 Kinikar A, Award Active. BIMC, 18-Paradkar M. IRB approved & expression for 64080-I **DBT NOC** JHU, Hissar S, diagnosis and Univ. Cape monitoring of Workman L awaiting at pediatric TB in Town, BJMC, IRB Africa and India Imperial submission in college, progress at London NIRT. MTA & CRF finalization ongoing. MDR-TB and Approved: 23723 2016 Horsburg R, 5 patients **BIGMC** Active HIV at RePORT BJGMC, Chandrasekaran enrolled at October 17, Sites India NIRT, P, Mave V, NIRT and on **IPMER** active September 17, JIPMER, Gupta A, Sarkar enrolment JHU, BMC NIRT, BMC pause. Active Jan. 11, 2018. 7. 23734 2016 CMC Validation and Approved: Christopher Fine Tuning of CMC DJ, agreement Agreement the Computer Thangakunam B, signed and active active-09/24/17 Aided Diagnosis Lal B, Agrawal September 24: of Pulmonary collecting Received IRB **Tuberculosis** clearance from receipts, IIT Delhi .CMC Model for the reimbursemen Indian building up t in process database of Subcontinent images(Cases and Controls) and Software under Development

RePORT INTERNATIONAL SUPPLEMENTAL FUNDED PROJECTS | AWARDED CRDF Partners & **CRDF** Progress/ **Start** Title **Investigators Updates** IRB Status Challenges Date # (Feb 2018) Extracranial Approved: 23721 2016 Thangakuna **Patient** Award Active Involvement as **CMC** mB, recruitment September 25: Detected by Christopher DI initiated (24 Collecting **Positron** recruited). receipts, reimbursemen **Emission** Tomography t upon Scan in Patients submission with Tubercular Meningitis 9. 23732 **BMC** Active Inflammatory Approved: 2016 Ellner J, Award is active, Biomarkers as a **JIPMER** Salgame P, approvals August 24, IIPMER Active Triage Test for Rutgers Sarkar S. received, Screening **BMC** Pleskunas | October 23: project initiated Symptomatic Collecting ТВ receipts, reimbursemen t upon submission 10. 23722 2016 Kumar P Characterizatio Approved: Award is active. Award Active NIRT-NIH n of Monocyte All the ordered June 17: PO's Responses in **ICER** reagents for the signed by Pulmonary TB **MVDRC** study have been vendors, Patients with or received. submission of without Type 2 Currently cell invoices will be **Diabetes** culture and flow paid 50% up cytometry front, and 50% experiments upon delivery ongoing. supplies/reagen ts. 23719 11. Effect of Approved: 2016 Hochberg NS, Approved; Award Active **IIPMER** Malnutrition on Negi VS, awaiting funding August 21st: Latent TB Rutgers Mahalakshmy T, to arrive at Collecting **BMC** Johnson WE, MedGenome so Receipts, Salgame P, that samples reimbursemen Pleskunas J can be t upon processed/analy submission. zed. 12. Approved: 23730 2016 Sabin L, Final documents Award Determining **IIPMER** Barriers to TB Sarkar S. awaiting final Pending: Care Pending: Hochberg NS, approvals at amendment BMC/BU IIPMER; submit Fernandes P. being (Submitted Pleskunas J, translations to translated at BMC, then JIPMER. No to BMC in Amsaveni Aug 2017) ready new updates, as of last EC call.

	RePORT INTERNATIONAL SUPPLEMENTAL FUNDED PROJECTS AWARDED							
Title		Partners & IRB Status	CRDF #	Start Date	Investigators	Progress/ Challenges	CRDF Updates (Feb 2018)	
13.	TH17 Cell Subsets as Potential Risk Markers of Latency and Active TB Infection in Household Contacts	Approved: BMMRC UT	23725	2016	Devalraju KP, Neela VSK, Valluri VL, Vankayalapati K	Award is active. Study initiated since October 2017.	Award Active June 17: reallocation of funds, signed new agreement. DNA isomation being done.	
14.	Comparison of Available Purified-Protein Derivative (PPD) Tuberculin Skin Test (TST) Antigen Solutions in Detecting Latent Tuberculosis Infection in India	Approved: CMC, BJGMC JIPMER, BMMRC, NIRT JHU, BMC	61783	2015	Christopher DJ, DeLuca A, Ellner J, Gupta A, Horsburgh B, Kadam D, Kulkarni V, Lakshmi V, Amsaveni, Chandrasekaran P, Mave V, Jones F, Hochberg N	Award active. 328 Health care workers enrolled. Tubersol successfully received from Sanofi. Coding and blindling reagents is in process.	Collection Receipts, reimbursemen t upon submission.	

	GRANTS & SUBSTUDIES AWARDED							
Title		Title Partners Grant Source		Start Date/ Duration	Investigators			
I.	Transcriptomic and Metabolomic Analysis of Microbiologically Confirmed Pediatric Tuberculosis Patients and Uninfected Household Contacts	BJGMC JHU	Ujala Foundation Wyncote Foundation BWI-CTU C-TRIUMPH	2017	Tornheim JA, Paradkar M, Dutta N, Bader J, Kulkarni V, Balasubramanian U, Bharadwaj R, Raja R, Sreenivasmurthy S, Karakousis P, Mave V, Pandey A, Gupta A			
2.	The Role of Innate Immunity in the Acquisition of Sterile Protection Against TB Infection	U Colorado, JHU, BJMC	NIH R2 I	2017	Weinberg A, Segano Z, Mave V, Gupte N, Paradkar M, Suryavanshi N, Kulkarni V, Balasubramanian U, Bharadwaj R, Gupta A			

GRANTS & SUBSTUDIES | AWARDED Start Grant Title **Partners** Date/ **Investigators** Source **Duration** 3. JHU, NIRT, **CTRIUMPH** 2017 Association of Lipid Shivakoti R, Mediators of Inflammation BIGMC Chandrasekaran P, and Gilead with TB Treatment Foundation Mave V, Kulkarni V, Outcomes Gupte A, Gupte N, Shivakumar SVBY, Nimkar S, Dalli J, Natarajan, S, Karunaianantham R, Gupta A 4. Measuring TB Drugs in Hair BJGMC NIH/NIAID: 2016-2018 Mave V, Dooley K, as a Tool to Monitor **NIRT** R21 Ramachandran G, Gupta JHU A, Bacchetti, Sushant M, Adherence, Exposure and Gupte N, Gandhi M Response NIH/NICHD: 5. Impact of Immune Changes BJGMC 2015-2019 Gupta A, Mathad J, of HIV and Stages of **NIRT** Bhosale R, Alexander M, R01 Pregnancy on TB JHU Mave V, Gupte N, Padhan N, Kulkarni V, Hannah LE, Babu S 2015-2017 6. Residual Respiratory **BJGMC** UJALA/ Gilead Gupte A, Gupta A, Meshram S, Kadam D, Impairment Following NIRT Foundation/ Pulmonary Tuberculosis: JHU RePORT India Mandar, Gupte N, The Lung Health Sub-Study Chandrasekaran P, Salvi S, Golub I, Selvaraju S 7. Targeting Mycobacterium JHU, BJMC NIH R21 2015 Karakousis P, Gupta A, Tuberculosis Persisters By Mave V, Kulkarni V, Dutta **Enhancing Stringent** Ν Response-Specific Cellular **Immunity** 8. Understanding of BJGMC **NIH CFAR** 2015 **Deluca A**, Suryavanshi N, Mave V, Kadam Tuberculosis Infection and **NIRT** and D43 JHU D, Chandrasekaran P, Preventive Therapy Among Skin-Test Positive Shivakumar SVBY, Household Contacts of Pardeshi G, Thomas B, Tuberculosis Cases Kolhi R, Gupta A Validating a Th I 7 Switch as NIRT, BIMC, DBT/ IISc 2018 Vyakarnam A, IISc, Bangalore, a Novel Correlate of Chandrasekaran P, Gupta Protective Immunity to TB JHU A, Mave V 10. Immune Responses and NIRT, BJMC, THSTI 2018 Singh R, Singhal A, Effect of Disulfiram on MTB THSTI, JHU Gupta A, Hannah LE, Infected PBMCs as a Chandrasekaran P Potential Host Directed

Therapy

GRANTS & SUBSTUDIES | AWARDED

	Title	Partners	Grant Source	Start Date/ Duration	Investigators
11.	Characterization of Genomics and Metabolomics among Individuals (TB-GWAS)	Emory JHU BJGMC NIRT PHRU McGill	NIH ROI	2018	Gandhi N, Shah S, Brust J, Gupta A, Mave V, Bharadwaj R, Chandrasekaran P, Hanna LE, Martinson N, Sun Y, Gwinn M, Schurr E, Jones D
12.	IFN-γ Independent Inhibition of MTB Growth in Human Macrophages	BMMRC UT	NIH/NIAID: R01A1123310- 01A1	2017	Vankayalapati K , Valluri V and others
13.	The Role of Monocyte Subpopulation in HIV+LTB+ Individuals and Development of Active TB	BMMRC UT	NIH: R21AI127178- 01 Indo-US Vaccine Program, RePORT India Cohort	2016-2018	Vankayalapati K, Valluri V, and others
14.	D4GDI-mediated Immune Responses in LTBI+HIV+ Individuals	BMMRC UT	NIH: R21AI120257- 01 Indo-US Vaccine Program, RePORT India	2015-2017	Vankayalapati K, Valluri V and others
15.	T-regs Mediated Immune Responses in LTBI+HIV+ Individuals	BMMRC UT	UT	2015	Vankayalapati K, Valluri V and others
16.	Validation Study of TruNAT-MTB-Rif in EPTB	CMC/NIRT/Hi nduja/ AIIMS	ICMR	2017	Christopher DJ, Singh M, Gomathi, Rodrigues C, Singh U
17.	Validation Study of TruNAT-MTB-Rif in Pediatric TB	CMC/NIRT/Hi nduja/ AIIMS	ICMR	2017	Christopher DJ, Singh M, Gomathi, Rodrigues C, Singh U
18.	Studying T cell Memory Responses for Understanding Protective Immune Response in Tuberculosis (TB)	CMC NIRT Saint Louis U	American Society of Tropical Medicine and Hygiene/ Burroughs Wellcome Fund)	2016	Christopher DJ, Chatterjee S, Balamugesh T

GRANTS & SUBSTUDIES | AWARDED Start Grant Title **Partners** Date/ **Investigators** Source **Duration JIPMER** 2016-2017 Role of Iron Deficiency in NIH Ellner J, Salgame P, Resistance of Women of **BMC** Sarkar S, Pleskunas I, Child-Bearing Age to Amsaveni, Hochberg NS **Tuberculosis** 20. Impact of Pregnancy on **JIPMER** NIH/NIAID 2015-2018 Ellner J, Sarkar S, **Tuberculosis BMC** R01 Hochberg N, Horsburgh CR, Salgame P, Savic R, Dartois V, Joseph NM, Jacob SE, Jayalakshmy R, Plakkal N, Ramachandran G, Sasirekha R, White LF **JIPMER** Warren Alpert 2018-2023 21. Tuberculosis: Learning the Hochberg NS, Parija S, **BMC** Impact of Nutrition (TB Foundation Chandrasekaran P, Rutgers Ellner II, Johnson WE, LION) Tufts Wanke C, Sarkar S, Negi **NIRT** VS, Joseph N, Rajkumari N, Mahalakshmy T, Reddy D, Saravanan N, Harisankar, Tripathy S 22. Impact of Personal **JIPMER Potts** 2014-2018 Hochberg NS, Reddy D, Exposure to Black Carbon **BMC** Sahu S, Sarkar S Memorial on Pulmonary Tuberculosis Foundation Severity 23. Compare Drug Levels in CMC 2015 Internal fluid Christopher DJ, Newly Diagnosed or research grant Balamugesh T Relapsed PTB/ EPTB Following Daily ATT vs **DOTS** Regimen Yield of TB using CMC Internal fluid 2014 Christopher 24. GeneXpert (Xpert MTB-Rif) research grant **DJ**,Balamugesh T by Induced Sputum Compared to Standard Sputum Samples 25. Multicenter Phase II/III RePORT India Serum 2017 -**RePORT India Pls** Double-Blind, Randomized, Sites Institute 2020 Placebo Controlled Study to Evaluate the Efficacy and Safety of VPM1002 in the Prevention of TB Recurrence in Pulmonary TB Patients after Successful TB Treatment in India.

	GRANTS & SUBSTUDIES AWARDED								
	Title	Partners	Grant Source	Start Date/ Duration	Investigators				
26.	Therapeutic Outcomes with Second-Line Drug Exposures in a Cohort of South African and Indian Patients with Drug Resistant TB: A Pharmacokinetic- Pharmacodynamic Assessment	Hinduja PHRU JHU	DBT/South Africa MRC	2017	Ashavaid TF , Variava E, Rodrigues C, Udwadia ZF, Gupta A, Martinson N				
27.	Predictors of Resistance Emergence Evaluation in MDR-TB Patients on Treatment - (PREEMPT)	JIPMER NIRT BJGMC Brazil Vanderbilt Rutgers CDC JHU BMC Hinduja	NIH/NIAID: R0 I	7/1/2017- 6/30/2022	Horsburgh R, Sterling TR,Pelloquin C, Alland D, Ciegelski P, Collins J, Chandrasekharan P, Ellner J, Gupta A, Mave V, Rolla V, Kritski A, Sarkar S				
28.	MDR-TB Free: Monitoring Adverse Effects, Utilizing Resources Optimally, Knowing Resistance Patterns, and Treatment Strategy (MDR TB – MUKT)	Hinduja JHU	Hinduja	2017	Udwadia ZF, Rodrigues C, Ashavaid TF, Tornheim JA, Gupta A				
29.	Whole Genome Sequencing of Drug Resistant Tuberculosis in India: Genotype-Phenotype Correlation, Clinical Impact of Resistance, and Sequencing Directly from Sputum	Hinduja JHU	NIH - IK23AI135102 -01AI	2018	Tornheim JA, Rodrigues C, Udwadia ZF, Ashavaid TF, Gupta A				

	GRANTS & SUBSTUDIES NOT AWARDED						
Title		Partners	Grant Source	Start Date/ Duration	Investigators		
1.	RePORT India TB Transmission Training Program (RITP)	RePORT India Consortium	NIH Fogarty D43	2017	Gupta A, Christopher DJ, Bollinger R, Deluca A, Golub J		

GRANTS & SUBSTUDIES | NOT AWARDED Start Date/ **Grant Title Partners Investigators** Source **Duration RePORT** 2. Developing a Rapid NIH/NIAI 2017 Walt D (Tufts PI), Rushdy A Point-of-Care TB (Broad Institute co-PI), Rolla V, International D: R01 Santos M, Kristi A, Sterling T, Li Diagnostic Y, Mave V, Cristopher DJ, Gupta A, Pim A, Walzl G, Hamilton C, Duffy D, Gillette M 3. **BJGMC** NIH/NIAA 2017 Gupta A, Chander G, Heidi H, Research and NIRT Interventions for HIV, A: Thomas B, Kadam D, Alcohol, Tobacco and JHU R01 Suryavanshi N, Chandrasekaran P, Mave V, Gupte N Tuberculosis in India and South Africa (The **HATT Consortium**) 4. Bio-markers for Risks of CMC **RePORT** 2017 Christopher DJ, Rose W Development of LTBI India and TB Disease in a Supplemen Cohort of Childhood tal Funding Contacts of Sputum Positive TB Patients 5. Impact of Air Pollution **RePORT** 2016-2017 **BIGMC** Shivakoti R, Gupta A, on Inflammation and **NIRT** India Chandrasekaran P, Anti TB Immunity JHU Supplemen Chandrakumar D, Golub J, Mave tal Funding V, Babu S, Elf J, Hannah LE, Kulkarni V, Gupte N **BJGMC RePORT** 2016-2017 Gupte A, Chandrasekaran P, Characterizing the Host Inflammatory Response, NIRT Gupta A, Babu S, Mave V, Gupte India and its Association with N, Kornfeld H IHU Supplemen Treatment Outcomes tal Funding and Lung Health in Adult Pulmonary TB Patients Undergoing Treatment in India 7. Does Tubercular **JIPMER RePORT** 2016 Kar S, Sarkar Si, Negi VS, Infection Adversely **BMC** India Prasanna MD, Roy G, Premarajan KC, Hochberg N, Affect Cardiovascular Supplemen Lakshminarayanan S Risk? tal Funding **JIPMER** NIH/R0I 2016 8. Impact of Malnutrition Hochberg NS, Salgame P, Wanke on Latent Tuberculosis **BMC** C, Johnson WE, Ellner JJ, Parija S, Negi VS, Joseph NM, Infection Rutgers OHSU Rajkumari N, Mahalakshmy T, Tufts White LF, Lewinsohn D

GRANTS & SUBSTUDIES | NOT AWARDED

	Title	Partners	Grant	Start Date/ Duration	Investigators
9.	Geographical and Genotypic Distribution of TB Cases Under RePORT India – Tools for Understanding Epidemiology	JIPMER BMC BU	RePORT India Supplemen tal Funding	2016	Sarkar S, Roy G, Mahalakshmy T, Lakshminaraya S, Joseph NM, Jenkins H, Amsaveni, Hochberg NS
10.	Determining Barriers to TB Care	JIPMER BMC	BU SPH Pilot	2016	Fernandes P, Sabin L, Sarkar S, Pleskunas J, Amsaveni, Hochberg NS
11.	Novel Serum Based Biomarkers for Diagnosis of TB and Treatment Monitoring in HIV-infected and Uninfected Children	BJGMC NIRT DTTC, Capetown JHU	India SA RFA	2016	Valvi C, Hesseling AC, Chandanwale A, Kulkarni R, Paradkar M, Mave V, Gupte N, Chandrasekaran P, Shivakumar SVBY, Danasekaran K, Thiruvenkadam K
12.	Pediatric TB Biomarkers for Diagnosis and Treatment Response	BJGMC NIRT JHU	NIH/NIAI D: R0I	2016	Karakousis P, Paradkar M, Tornheim JA, Gupta A, Chandrasekaran P, Bader J, Mave V, Gupte N, Kulkarni V, Bharadwaj R, Valvi C, Shivakumar SVBY, Hannah LE, Pandey A
13.	Biomarkers for Treatment Response and Disease Recurrence in Pulmonary and Extrapulmonary Tuberculosis Disease	IGIB BJGMC SA NIRT JHU	India SA RFA	2016	Gokhale R, Kana B, Swaminathan S, Chandrasekaran P, Mave V, Gupta A, Shivakumar SVBY
14.	Novel Blood Biomarker to Predict Progression to Active TB Disease Among Recently Exposed Adult and Pediatric Household Contacts of TB Patients in India and South Africa	BJGMC NIRT SA JHU	India SA RFA	2016	Chandrasekaran P,Scriba T, Mave V, Paradkar M, Shivakumar SVBY, Gupte N, Gupta A, Danasekaran K, Khan S, Thiruvengadam S, Tripathy S, Prasad K
15.	Memory-like NK Cells and Household Contacts of TB Patients	BMMRC UT	NIH: 1R21A1127 177-01		Vankayalapati K, Valluri V and others
16.	Annual Screening of Healthcare Personnel Using TST & QGFT and Identification of Bio- markers & the Role of Pet Scan	CMC	RePORT India Supplemen tal Funding	2016	Christopher DJ, Balamugesh T

	GRANTS & SUBSTUDIES NOT AWARDED							
	Title	Partners	Grant Source	Start Date/ Duration	Investigators			
17.	Radiological Treatment Response in Pulmonary Tuberculosis	CMC	RePORT India Supplemen tal Funding	2016	Balamugesh T, Christopher DJ			

	GRANTS & SUBSTUDIES PENDING							
	Title	Partners Grant Source Duration		Investigators				
1.	Effect of Helminths on Tuberculosis Severity	JIPMER BMC Rutgers NIRT NIH	NIH R21	2018	Hochberg NS, Salgame P, Babu S, Ellner JJ, Johnson WE, Joseph NM, Mahalakshmy T, Nutman T, Rajkumari N, Parija S			
2.	Innate Immune Responses in Household Contacts	BMMRC/LEPRA BJMC NIRT JHU UT	NIH/NIAID : R0I	2017	Vankayalapati K, Valluri V, Gupta A, Mave V, Kadam D, Bharadwaj R,Hanna LE,Shivakumar SVBY, Prudhula, Chandrasekaran P, Gupte N			
3.	Progression of Tuberculosis Infection to Disease Among HIV-Infected and HIV Seronegative Individuals – A Prospective Cohort Study in South India and South Africa	CMC BMMRC/LEPRA JIPMER NIRT PHRU UWITS	Indo-South Africa	2016	Valluri VL, Martinson N, Christopher DJ, Variava E, Sarkar S, Priyadarsini P, Bhavna G, Ziyaad W, Melissa C, Prudhula DK, Sanjeev NV			

